UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA CIVIL– PCV

THAINÁ RUDNICK

ESTUDO EXPERIMENTAL E NUMÉRICO DE CAMADAS DE SOLO REFORÇADAS COM GEOCÉLULAS UTILIZANDO MODELOS EM GRANDE ESCALA

MARINGÁ

2020

THAINÁ RUDNICK

ESTUDO EXPERIMENTAL E NUMÉRICO DE CAMADAS DE SOLO REFORÇADAS COM GEOCÉLULAS UTILIZANDO MODELOS EM GRANDE ESCALA

Dissertação apresentada como parte dos requisitos necessários para obtenção do título de Mestre em Engenharia Civil do Programa de Pós-graduação em Engenharia Civil da Universidade Estadual de Maringá.

Orientador: Prof. Dr. Jeselay Hemetério Cordeiro dos Reis Coorientador: Dr. Pablo Augusto Krahl

MARINGÁ

2020

Dados Internacionais de Catalogação-na-Publicação (CIP) (Biblioteca Central - UEM, Maringá - PR, Brasil)

R916e	Rudnick, Thainá Estudo experimental e numérico de camadas de solo reforçadas com geocélulas utilizando modelos em grande escala / Thainá Rudnick Maringá, PR, 2021. 172 f.: il. color., figs., tabs.
	Orientador: Prof. Dr. Jeselay Hemetério Cordeiro dos Reis. Coorientador: Prof. Dr. Pablo Augusto Krahl. Dissertação (Mestrado) - Universidade Estadual de Maringá, Centro de Tecnologia, Departamento de Engenharia Civil, Programa de Pós-Graduação em Engenharia Civil, 2021.
	 Sistema de pavimentação . 2. Camada de base. 3. Prova de carga. 4. Geocélula. 5. Simulação numérica. I. Reis, Jeselay Hemetério Cordeiro dos, orient. II. Krahl, Pablo Augusto, coorient. III. Universidade Estadual de Maringá. Centro de Tecnologia. Departamento de Engenharia Civil. Programa de Pós-Graduação em Engenharia Civil. IV. Título.
	CDD 23.ed. 624.1513

Jane Lessa Monção - CRB 9/1173

THAINÁ RUDNICK

ESTUDO EXPERIMENTAL E NUMÉRICO DE CAMADAS DE SOLO REFORÇADAS COM GEOCÉLULAS UTILIZANDO MODELOS EM GRANDE ESCALA

Dissertação de Mestrado apresentada no dia 07/07/2020. Julgada adequada para a obtenção do título de MESTRE EM ENGENHARIA CIVIL e aprovada em sua forma final, como requisito parcial para a obtenção do título de MESTRE EM ENGENHARIA CIVIL DA UNIVERSIDADE ESTADUAL DE MARINGÁ.

BANCA EXAMINADORA

Prof. Dr. Jeselay Hemetério Cordeiro dos Reis Programa de Ros-Graduação em Engenharia Civil Universidade Estadual de Maringá Orientador

Pablo augusto Krohl

Prof. Dr. Pablo Augusto Krahl Faculdade de Engenharia Civil, Arquitetura e Urbanismo Universidade Estadual de Campinas Coorientador

Profa. Dra. Juliana Azoia Lukiantchuki Programa de Pós-Graduação em Engenharia Civil Universidade Estadual de Maringá

Prof. Dr. Sidner Helder Cardoso Teixeira

Prof. Dr. Sidner Helder Cardoso Teixeira Programa de Pós-Graduação em Engenharia de Construção Civil Universidade Federal do Paraná

DEDICATÓRIA

Assim como todas as conquistas, dedico esta dissertação aos meus pais.

AGRADECIMENTOS

À Coordenação de Aperfeiçoamento pessoal de Nível Superior – CAPES e ao Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq pela bolsa concedida durante alguns meses da pesquisa;

À Universidade Estadual de Maringá por oferecer e apoiar este e tantos outros cursos de Pós-Graduação;

Ao corpo docente do Programa de Mestrado em Engenharia Civil, por todo o conhecimento compartilhado, bem como aos demais funcionários do programa por toda a dedicação;

Ao Professor Dr. Jeselay Hemetério Cordeiro dos Reis, pela orientação impecável, compreensão e tantos ensinamentos;

Ao Professor Dr. Pablo Krahl por aceitar o desafio de ser meu co-orientador e toda a ajuda;

A empresa PlastPrime por ceder o material utilizado para realização da presente pesquisa;

À minha família por todo o apoio;

Aos amigos e colegas que direta ou indiretamente ajudaram na realização dessa pesquisa.

RESUMO

A necessidade de se obter pavimentos seguros e com maior durabilidade, faz com que sejam estudados materiais alternativos para as camadas de base e sub-base que tem como objetivo receber e transmitir os esforços para o subleito. Uma alternativa é o reforço de materiais granulares com geossintéticos. O presente trabalho busca avaliar a eficiência de utilização da geocélula como reforço em camadas de base e sub-base granulares. Geocélulas são um tipo de geossintético que promove o feito de confinamento por se tratar de um material tridimendisional além dos efeitos provocados pelos geossintéticos planares. O estudo consiste na caracterização dos materiais, seguidas da preparação e execução de 9 ensaios de prova de carga, variando a espessura da camada de base (15 e 30 cm) e testando diferentes posições do reforço. Apesar de existirem vários estudos experimentais sobre as geocélulas, a modelagem numérica do solo reforçado com geocélula, fundamental para entender seu comportamento, ainda é pouco explorada. As provas de carga também foram reproduzidas numericamente, com a intenção de criar um modelo numérico capaz de prever a capacidade de carga das camadas de solo reforçado. A eficiência do reforço com geocélula ficou clara a partir dos ensaios, apresentando em seu melhor resultado um ganho de cerga de 80% na capacidade de carga. O modelo numérico criado apresentou boa concordância com os resultados experimentais.

Palavras-chave: camada de base, geocélula, prova de carga, simulação numérica.

ABSTRACT

The need to obtain safe pavements with greater durability, causes alternative materials to be studied for the base and sub-base layers which aims to receive and transmit efforts to the sub-award. An alternative is the reinforcement of granular materials with geosynthetics. The present work seeks to evaluate the efficiency of the use of the geocell as reinforcement in granular base and sub-base layers. Geocells are a type of geosynthetic that promotes the effect of confinement because it is a three-dimensional material in addition to the effects caused by planar geosynthetics. The study consists of the characterization of the materials, followed by the preparation and execution of 9 load test tests, varying the thickness of the base layer (15 and 30 cm) and testing different reinforcement positions. Although there are several experimental studies on geocells, numerical modeling of soil reinforced with geocells, fundamental to understand their behavior, is still underexplored. Load tests were also reproduced numerically, with the intention of create a numerical model capable of predicting the load capacity of reinforced soil layers. The efficiency of the geocell reinforcement became clear from the tests, showing in its best result an increase of 80% in the load capacity. The numerical model created showed good agreement with the experimental results.

Key-words: base layer, geocell, load plate test, numeric simulation.

LISTA DE FIGURAS

Figura 1 – Geometria típica de uma geocélula	25
Figura 2 – Geocélula de NPA	26
Figura 3 – Ilustração do efeito de confinamento: a) aplicação da carga; b) indução	de
tensões horizontais na parede da geocélula; c) mobilização de tensão cisalhante	na
interface solo/geocélula	27
Figura 4 – Efeito de confinamento no reforço de geocélula	27
Figura 5 – Mecanismo de espraiamento de tensões provocado pelo efeito laje	28
Figura 6 – Ilustração do efeito de membrana: a)aplicação de carga, b)manifestação	de
tensões cisalhantes na interface solo/geocélula devido a deformação do solo de fundaç	ão
	28
Figura 7 – Superfície de ruptura de solo: a) sem reforço; b) reforçado com uma cama	ıda
de geocélulas	30
Figura 8 – Círculo de Mohr para o cálculo da coesão aparente devido ao reforço	34
Figura 9 – Espraiamento de tensões verticais graças ao reforço de geocélula	35
Figura 10 – Efeito de membrana no reforço de geocélula	35
Figura 11 – Comparação entre a capacidade de carga obtida experimentalmente e	e a
calculada pelo método proposto e outros	37
Figura 12 - Comparação entre a tensão vertical medida durante o experimento e	as
medidas por diferentes metodologias	39
Figura 13 – Esquema de reforço com múltiplas camadas de geocélula	39
Figura 14 – Comparação de resultados experimentais e analíticos para diversas situaçõ	5es
de reforço	40
Figura 15 – Arranjo geral do ensaio	41
Figura 16 - Tanque de ensaio e camada de geocélula	41
Figura 17 – Curva pressão aplicada x coeficiente de recalque para: a)Dr = 35% e b) Dr	r =
65%	43
Figura 18 – Representação esquemática do tanque de ensaio: a) Seção Y-Z, b) Seção X	.,Y
	43

Figura 19 - Variações das curvas carga-deslocamento para areias: a) e b) não reforçada,
c) e d) reforçada com GC55, e) e f) reforçada com GC110; (a,c, e e representam solos de
enchimento G6, e b,d, e f representam solo de enchimento G12) 45
Figura 20 – Representação esquemática do equipamento utilizado para o ensaio 47
Figura 21 – Esquema do reforço com multicamadas: a)geocélula b)geotêxtil planar 47
Figura 22 – Variação do recalque pela pressão aplicada para as várias situações de reforço
Figura 23 – Layout da caixa utilizada nos ensaios 49
Figura 24 – Geocélula : a) Única e b) Múltiplas 49
Figura 25 - Deslocamento acumulado pelo número de carregamentos: a) areia KR, b)
QW e c) AB-3
Figura 26 – a)Arranjo geral do equipamento de ensaio; b) Geometria da camada de solo
reforçado
Figura 27 - Variação do coeficiente de recalque pela pressão aplicada para camadas
reforçadas e não-reforçadas submetidas à carga estática
Figura 28 – Seções dos perfis estudados 53
Figura 29 – Configuração do ensaio: a) Vista em planta; b) Vista em corte 54
Figura 30 – Ruptura da geocélula
Figura 31 – Profundidade de assentamento x número de passadas 55
Figura 32 – Corte esquemático do equipamento de prova de carga cíclica 55
Figura 33 – Tensão vertical na interface entre a base e o subleito: a) no centro; b) a 125
mm do centro
Figura 34 - a) Arranjo da geocélula na caixa de cisalhamento; b) Vista esquemática do
aparelho de cisalhamento
Figura 35 - Esquema dos parâmetros efetivos nas características de cisalhamento da
interface solo-geocélula
Figura 36 - Geometria do modelo numérico de solo reforçado: a) dimensões, b)
geocélula; c) Vista lateral; d) Vista em planta; e) condições de contorno 61
Figura 37 - Comparação entre a performance da geocélula e geossintético planar
(geogrelha), a)Pressão-deslocamento; b)Variação do BCR 62
Figura 38 – a) Geometria do modelo analisado; b) geometria da geocélula modelada no
Abaqus

Figura 39 - Curva pressão aplicada x deslocamento para camadas de solo reforçadas e
não-reforçadas
Figura 40 – Detalhes da prova de carga : a) Seção não-reforçada; b) Seção Reforçada; c)
Malha da seção não-reforçada e d) Malha da seção reforçada65
Figura 41 – Esquema utilizado para a simulação da seção da ferrovia
Figura 42 – Deslocamento em metros após 6 ciclos de carga: a) Seção não reforçada; b)
Seção reforçada
Figura 43 – Equipamento triaxial utilizado no ensaio
Figura 44 – Modelagem em elementos finitos de um seção rodoviária
Figura 45 – Deformação vertical na: a) Camada de sublastro não reforçada; b) Camada
de sublastro reforçada com geocélula68
Figura 46 – Ensaio de vibração em bloco: a) Vista esquemática; b) Mecanismo de rotação
do oscilador mecânico
Figura 47 – Condições de solo ensaiadas 70
Figura 48 – Modelo numérico em FLAC 3D para quatro condições: a) Não reforçado; b)
reforço com uma camada de geogrelha; c)Reforço com duas camadas de geogrelha; d)
Reforço com uma camada de geocélula71
Figura 49 - Comparação entre os deslocamentos encontrados experimentalmente e
numericamente71
Figura 50 – a) Equipamento utilizado para o ensaio; b) Detalhe da seção analisada 72
Figura 51 – Modelo numérico utilizado no estudo
Figura 52 - Variação da curva pressão-coeficiente de recalque em função: a) da largura
do elemento de geocélula; b) da altura da camada de geocélula73
Figura 53 – Equipamento utilizado: a) foto; b) Situação esquemática completa
Figura 54 - a) Modelo geométrico e condições de contorno; b) Malha utilizada na
modelagem numérica
Figura 55 – Comparação das curvas carga-deslocamento experimentais e numéricas para
os casos: a) Não-reforçado (B = 300 mm); b) Reforçado (B = 300 mm); c) Não-reforçado
(B = 225 mm) e d) Reforçado (B = 225 mm)
Figura 56 – Distribuição de tensões após a aplicação de 20 mm de deslocamento para B
= 300 mm e D/B = 3 para os casos: a) Não reforçado e b) Reforçado
Figura 57 – Comparação entre a deformação permanente medida experimentalmente e
prevista por modelagem numérica para: a) Base não-reforçada; b) Base reforçada 78

Figura 58 – Deformação total para diferentes situações de reforço	78
Figura 59 – Modelos de Mohr-Coloumb e Drucker-Prager no plano desviatório	80
Figura 60 – Superfície de escoamento de Drucker-Prager	80
Figura 61 – Gráfico da tensão cisalhante pelo deslocamento horizontal do Subleito	82
Figura 62 – Envoltória de Mohr-Coloumb para o Subleito	83
Figura 63 – Grãos da areia utilizada na camada de base	84
Figura 64 – Composição granulométrica da areia utilizada na camada de base	85
Figura 65 - Gráfico da tensão cisalhante pelo deslocamento horizontal da Areia	85
Figura 66 - Envoltória de Mohr-Coloumb para a Areia	86
Figura 67 – Elemento de reforço – PlastFloor 50t	87
Figura 68 – Instalação do Plastfloor	87
Figura 69 – Exemplo de aplicação do Plastfloor	88
Figura 70 – Ensaio de tração no elemento de reforço	88
Figura 71 – Caixa metálica utilizada na realização das provas de carga	89
Figura 72 – Vista em 3D do sistema utilizado para as provas de carga	90
Figura 73 – Vista em planta do sistema utilizado para as provas de carga	91
Figura 74 – Vista frontal do sistema utilizado para as provas de carga	91
Figura 75 – Sistema utilizado para realização das provas de carga	92
Figura 76 – Sistema utilizado nas provas de carga	92
Figura 77 – Realização das provas de carga: a) S0 e b) S0-B15-GB2	94
Figura 78 – Representação esquemática dos ensaios de prova de carga realizados	95
Figura 79 - Representação numérica do reforço: a) Base; b) Hexágonos e c) Refor	rço
completo	97
Figura 80 – Modelo numérico: a) Aplicação das condições de contorno; b) aplicação	da
carga no modelo	99
Figura 81 – Discretização da malha na geocélula	99
Figura 82 – Modelo utilizado na simulação: a) modelo completo e b) ¼ do tanque 1	00
Figura 83 – Comparação entre o modelo completo e a aplicação de simetria 1	01
Figura 84 – Representação numérica Partes que representam o solo no modelo numéri	co:
a) Subleito; b) Base 30; c) Base 15; d) Geocélula e e) Placa-de-carga 1	02
Figura 85 – Modelos de prova de carga simulados 1	03
Figura 86 – Restrições aplicadas: a) na direção X; b) na direção Y e c) na direção Z. 1	06
Figura 87 – Interação aplicada entre a placa de carga e o maciço de solos 1	07

Figura 88 - Resultados obtidos através para diferentes tamanhos de elementos 108
Figura 89 – Malha utilizada para representar a camada de areia e subleito 109
Figura 90 - Curvas Tensão(kPa) x Deslocamento (mm) das provas de carga realizadas
Figura 91 - Curvas Tensão(kPa) x s/D (%) das provas de carga realizadas 111
Figura 92 – Fissuras encontradas no topo da base após o carregamento:
a)S0-B30; b) S0-B30-GA1; c) S0-B30-GA2
Figura 93 - Fissuras encontradas no topo da base após o carregamento:
a)S0-B30-GB1; b) S0-B30-GB2
Figura 94 – Resultado da simulação do ensaio de tração no reforço 113
Figura 95 - Comparação entre a curva experimental e numérica do ensaio de tração no
reforço
Figura 96 - Curvas Tensão(kPa) x Deslocamento (mm) das simulações realizadas 114
Figura 97 – Distribuição de tensões verticais no subleito – S0 115
Figura 98 - Distribuição das deformações plásticas na camada do Subleito - S0:
a) Deformações plásticas verticais; b) Deformações plásticas equivalentes 116
Figura 99 - Distribuição de tensões verticais na base – S0-B15 116
Figura 100 - Distribuição de tensões verticais no subleito – S0-B15: 116
Figura 101 – Distribuição das deformações plásticas na camada de base – S0-B15: a)
Deformações plásticas verticais; b) Deformações plásticas equivalentes 117
Figura 102 - Distribuição das deformações plásticas no subleito – S0-B15: a)
Deformações plásticas verticais; b) Deformações plásticas equivalentes 117
Figura 103 – Distribuição das tensões verticais no modelo completo – S0-B15-GB1 118
Figura 104 - Distribuição de tensões verticais na base – S0-B15-GB1 118
Figura 105 - Distribuição de tensões verticais no subleito – S0-B15-GB1 119
Figura 106 - Distribuição das deformações plásticas na camada de base - S0-B15-GB1:
a) Deformações plásticas verticais; b) Deformações plásticas equivalentes 119
Figura 107 - Distribuição das deformações plásticas no subleito - S0-B15-GB1:
a) Deformações plásticas verticais; b) Deformações plásticas equivalentes 120
Figura 108 – Deformação na geocélula após o carregamento – S0-B15-GB1 120
Figura 109 – Pressão absorvida pela geocélula após o carregamento – S0-B15-GB1. 121
Figura 110 - Distribuição das tensões verticais no modelo completo – S0-B15-GB1. 122
Figura 111 - Distribuição de tensões verticais na base – S0-B15-GB2 122

Figura 112 - Distribuição de tensões verticais no subleito - S0-B15-GB2...... 123 Figura 113 - Distribuição das deformações plásticas na camada de base – S0-B15-GB2: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes 123 Figura 114 - Distribuição das deformações plásticas no subleito - S0-B15-GB2: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes 124 Figura 115 - Deformação na geocélula após o carregamento - S0-B15-GB2 124 Figura 116 - Pressão absorvida pela geocélula após o carregamento - S0-B15-GB2 . 125 Figura 117 – Pontos de deformação plástica na geocélula – S0-B15-GB2...... 125 Figura 118 - Distribuição de tensões verticais na base - S0-B30 126 Figura 119 - Distribuição de tensões verticais no subleito – S0-B30...... 126 Figura 120 - Distribuição das deformações plásticas na camada de base - S0-B30: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes 126 Figura 121 - Distribuição das deformações plásticas no subleito - S0-B30: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes 127 Figura 122 - Distribuição das tensões verticais no modelo completo - S0-B30-GA1. 127 Figura 123 - Distribuição de tensões verticais na base – S0-B30-GA1 128 Figura 124 - Distribuição de tensões verticais no subleito - S0-B30-GA1...... 128 Figura 125 - Distribuição das deformações plásticas na camada de base - S0-B30-GA1: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes 129 Figura 126 - Distribuição das deformações plásticas no subleito - S0-B30-GA1: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes 129 Figura 127 - Deformação na geocélula após o carregamento - S0-B30-GA1 130 Figura 128 - Pressão absorvida pela geocélula após o carregamento - S0-B30-GA1. 130 Figura 129 - Distribuição das tensões verticais no modelo completo - S0-B30-GA2. 131 Figura 130 - Distribuição de tensões verticais na base - S0-B30-GA2 131 Figura 131 - Distribuição de tensões verticais no subleito – S0-B30-GA2...... 132 Figura 132 - Distribuição das deformações plásticas na camada de base - S0-B30-GA2: Figura 133 - Distribuição das deformações plásticas no subleito - S0-B30-GA2: Figura 134 - Deformação na geocélula após o carregamento - S0-B30-GA2 133 Figura 135 - Pressão absorvida pela geocélula após o carregamento - S0-B30-GA2. 133 Figura 136 - Pontos de deformação plástica na geocélula - S0-B30-GA2 134

Figura 137 - Distribuição das tensões verticais no modelo completo - S0-B30-GB1. 134
Figura 138 - Distribuição de tensões verticais na base – S0-B30-GB1 135
Figura 139 - Distribuição de tensões verticais no subleito – S0-B30-GB1 135
Figura 140 - Distribuição das deformações plásticas na camada de base - S0-B30-GB1:
a) Deformações plásticas verticais; b) Deformações plásticas equivalentes 135
Figura 141 - Distribuição das deformações plásticas no subleito - S0-B30-GB1:
a) Deformações plásticas verticais; b) Deformações plásticas equivalentes 136
Figura 142 - Deformação na geocélula após o carregamento – S0-B30-GB1 136
Figura 143 - Pressão absorvida pela geocélula após o carregamento – S0-B30-GB1 . 136
Figura 144 - Pontos de deformação plástica na geocélula – S0-B30-GB1 137
Figura 145 - Distribuição das tensões verticais no modelo completo - S0-B30-GB2. 137
Figura 146 - Distribuição de tensões verticais na base – S0-B30-GB2 138
Figura 147 - Distribuição de tensões verticais no subleito – S0-B30-GB2 138
Figura 148 - Distribuição das deformações plásticas na camada de base - S0-B30-GB2
Figura 149 - Distribuição das deformações plásticas no subleito - S0-B30-GB2:
a) Deformações plásticas verticais; b) Deformações plásticas equivalentes 139
Figura 150 - Deformação na geocélula após o carregamento – S0-B30-GB2 139
Figura 151 - Pressão absorvida pela geocélula após o carregamento – S0-B30-GB2 . 139
Figura 152 - Pontos de deformação plástica na geocélula – S0-B30-GB2 140
Figura 153 – Comparação entre o resultado experimental e numérico do ensaio 1-S0 141
Figura 154 - Comparação entre o resultado experimental e numérico do ensaio 2-S0-B15
Figura 155 - Comparação entre o resultado experimental e numérico do ensaio 3-S0-B15-
GB1142
Figura 156 - Comparação entre o resultado experimental e numérico do ensaio 4-S0-B15-
GB2
Figura 157 - Comparação entre o resultado experimental e numérico do ensaio 5-S0-B30
Figura 158 - Comparação entre o resultado experimental e numérico do ensaio 6-S0-B30-
GA1
Figura 159 – Comparação entre o resultado experimental e numérico do ensaio 7-S0-B30-
GA2

Figura 160 - Comparação entre o resultado experimental e numérico do ensaio 6-S0-	B30-
GB1	. 145
Figura 161 - Comparação entre o resultado experimental e numérico do ensaio 6-S0-	B30-
GB2	. 145
Figura 162 – Componentes da janela principal do Abaqus	. 153
Figura 163 – Janela Create Part	. 154
Figura164 – Janela Sketcher de criação da geometria da part	. 155
Figura 165 – Janela Edit Base Extrusion	. 155
Figura 166 – Part que representa o maciço de solo criada	. 155
Figura 167 – Janela Sketcher e ferramentas necessárias para o desenho da placa de c	arga.
	. 155
Figura 168 – Módulo Assembly e ferramenta Instances em destaque no Model Tree	156
Figura 169 – Janela Create Instance	. 157
Figura 170 – Ferramentas necessárias para montagem do modelo	. 157
Figura 171 – Janela <i>Edit Material</i>	. 158
Figura 172 – Janelas: a) Create Section; b) Edit Section	. 158
Figura 173 – Atribuindo uma Section a uma part	. 159
Figura 174 – Criando Boundary Conditions	. 160
Figura 175 – Aplicação da restrição em cada face do modelo	. 160
Figura 176 – Modelo com todas as restrições aplicadas	. 161
Figura 177 – Janela Create Interaction	. 161
Figura 178 – Selecionando as superfícies da interação	. 162
Figura 179 – Janela Edit Interaction	. 162
Figura 180 – Janela Edit Contact Property	. 163
Figura 181 – Interação aplicada	. 163
Figura 182 – Janela Create Step	. 164
Figura 183 – Janela Edit Step (Basic)	. 164
Figura 184 – Janela Edit Step (Incrementation)	. 165
Figura 185 – Janela Create Load	. 165
Figura 186- Janela Edit Load	. 166
Figura 187 – Edit Load (descarregamento)	. 166
Figura 188 – <i>Toolbox</i> do módulo <i>Mesh</i>	. 167
Figura 189 – Janela Global Seeds	. 168

Figura 190 – Janela <i>Element Type</i>	168
Figura 191 – Malha gerada nos elementos: a) Subleito; b) Placa	168
Figura 192 – Janela <i>Edit Job</i>	169
Figura 193 – Janela <i>monito</i> r	170
Figura 194 – Interface Results do Abaqus	171
Figura 195 – Janela Create XY Data	171
Figura 196 – Janela XY Data from ODB Field Output	172
Figura 197 – Operate on XY Data	172

LISTA DE TABELAS

Tabela 1 – Detalhes sobre o programa de ensaios	42
Tabela 2 – Ensaios realizados por Merjahrdi	43
Tabela 3 – Combinação entre os parâmetros para realização dos ensaios	46
Tabela 4 – Fator de melhoria do Tráfego	50
Tabela 5 – Combinação entre os ensaios estáticos e dinâmicos	51
Tabela 6 – Configuração dos ensaios	58
Tabela 7 – Variação das propriedades dos solos	59
Tabela 8 – Propriedades utilizadas para representar os materiais na simulação	63
Tabela 9 – Propriedades mecânicas do solo do Subleito	83
Tabela 10 – Propriedades mecânicas da areia	84
Tabela 11 – Simbologia das aplicações do reforço	93
Tabela 12 – Configuração dos ensaios de prova de carga realizados	94
Tabela 13 – Características Geométricas do Reforço	98
Tabela 14 – Parâmetros escolhidos para representar a Geocélula	98
Tabela 15 – Parâmetros utilizados na validação da simetria	100
Tabela 16 – Resumo de propriedades das partes do modelo	101
Tabela 17 – Parâmetros Utilizados para caracterizar as camadas de solo	104
Tabela 18 – Parâmetros utilizados na simulação da placa de carga e geocélula	105
Tabela 19 – Características dos <i>steps</i> criados no modelo	106
Tabela 20 - Comparação entre tempo de processamento e tamanho dos element	os de
malha	108
Tabela 21 – Elementos e tamanho da malha adotados na pesquisa	109
Tabela 22 – Rigidez e capacidade de carga obtidas experimentalmente	111
Tabela 23 – Rigidez e capacidade de carga obtidas numericamente	114
Tabela 24 - Comparação entre o kv encontrado experimentalmente e numérican	nente
	146
Tabela 25 – Comparação entre as capacidades de carga encontradas experimentalme	ente e
numericamente	146

SUMÁRIO

1.	INTRODUÇÃO	21
1.1	JUSTIFICATIVA	22
1.2	OBJETIVOS	
1.2.1	Objetivos Específicos	24
2.	GEOCÉLULA	25
2.1	INTRODUÇÃO	25
2.2	PROPRIEDADES MECÂNICAS	
2.2.1	Efeito de confinamento	
2.2.2	Efeito Laje (Espraiamento de tensões)	27
2.2.3	Efeito de membrana	
3.	BASES GRANULARES REFORÇADAS COM GEOCÉLULAS	29
3.1	MÉTODOS ANALÍTICOS	29
3.1.1	Método de Koerner (1994)	29
3.1.2	Método da Presto (2008)	31
3.1.3	Método da coesão aparente (1993)	33
3.1.4	Método Zhang (2010)	34
3.1.5	Estudos Recentes	36
3.2	ESTUDOS EXPERIMENTAIS	40
3.2.1	Provas de carga estáticas	40
3.2.2	Provas de carga cíclicas	48
3.2.3	Outros ensaios	57
3.3	SIMULAÇÃO NUMÉRICA	59
3.3.1	Modelos Utilizados	60
3.4	ESTUDOS MISTOS: SIMULAÇÃO E LABORATÓRIO	64
3.4.1	Modelos numéricos e ensaios	64

4.	MODELO DE DRUCKER – PRAGER	79
5.	METODOLOGIA EXPERIMENTAL	82
5.1	MATERIAIS	
5.1.1	Solo do Subleito	82
5.1.2	Areia	
5.1.3	Reforço	86
5.2	ENSAIO DE PROVA DE CARGA	88
5.2.1	Método de Ensaio	
5.2.2	Ensaios Realizados	
5.2.3	Cálculo Módulo de Elasticidade	
6.	METODOLOGIA NUMÉRICA	
6.1	SIMULAÇÃO DO ENSAIO DE TRAÇÃO NA GEOCÉLULA	
6.1.1	Geometria do modelo	
6.1.2	Materiais e seções	
6.1.3	Configuração da Análise	
6.1.4	Malha	
6.2	SIMULAÇÃO DAS PROVAS DE CARGA	
6.2.1	Partes utilizadas	101
6.2.2	Montagem do modelo	102
6.2.3	Materiais e seções	103
6.2.4	Configurando a análise	105
6.2.5	Estudo da malha	108
7.	RESULTADOS EXPERIMENTAIS	110
8.	RESULTADOS NUMÉRICOS	113
8.1	ENSAIO DE TRAÇÃO NO REFORÇO	113
8.2	PROVAS DE CARGA	

8.2.1	Ensaio S0115	
8.2.2	Ensaio S0-B15 1	15
8.2.3	Ensaio S0-B15-GB1 1	18
8.2.4	Ensaio S0-B15-GB2 1	21
8.2.5	Ensaio S0-B30 1	125
8.2.6	Ensaio S0-B30-GA1 1	27
8.2.7	Ensaio S0-B30-GA2 1	31
8.2.8	Ensaio S0-B30-GB11	134
8.2.9	Ensaio S0-B30-GB2 1	137
9.	COMPARAÇÕES E ANÁLISES 1	141
10.	CONCLUSÕES E SUGESTÕES 1	147
REFERÊNCIAS 149		149
APÊNDICE A - TUTORIAL DA MODELAGEM DA PROVA DE CARGA 153		

1. INTRODUÇÃO

Os pavimentos são estruturas de múltiplas camadas utilizadas para absorver e distribuir os esforços devido ao trafego de veículos. De modo a tornar a superfície de rolamento mais segura e confortável. Dentre as camadas destacam-se a base e a sub-base que recebem e transmitem os esforços para o subleito. Devendo ser compostas por materiais com capacidade de carga e rigidez compatíveis com o seu desempenho.

Para seleção dos materiais a serem utilizados na base deve ser levado em consideração características do comportamento mecânico que proporcionem pequenas deformações, boa resistência as solicitações de tração e alta resistência a compressão. Uma alternativa para obtenção dessas características quando se utiliza materiais granulares é o reforço com geocélula que são estruturas tridimensionais relativamente espessas, constituídas por tiras poliméricas que são soldadas entre si para formar células interconectadas que podem ser preenchidas por solo ou outros materiais granulares (IGS, 2012), cuja aplicação proporciona uma redistribuição de tensões e consequentemente a redução das deformações permanentes. Através da restrição da deformação lateral e aumento da rigidez e da resistência ao cisalhamento proporcionada pelas tensões de confinamento.

Como forma de avaliação do comportamento mecânico das camadas de solo reforçado, é necessário estudar a relação tensão-deslocamento das mesmas. As curvas de tensão-deslocamento, bem como outros parâmetros importantes podem ser obtidos através de ensaios de provas-de-carga estática.

Outra maneira de avaliar o comportamento das camadas de solo reforçado é a partir da simulação numérica. Diversos *softwares* possibilitam avaliar a distribuição de tensões e deslocamentos nas camadas de solo, a partir da inserção de parâmetros e modelos matemáticos. A comparação entre os resultados obtidos em laboratório com os resultados da simulação numérica, permite avaliar a confiabilidade do modelo utilizado e sua possível extrapolação para outros casos. Sendo assim, o presente trabalho tem por objetivo avaliar o comportamento mecânico das camadas de solo reforçadas com geocélula.

1.1 JUSTIFICATIVA

Apesar de existirem vários estudos experimentais sobre as geocélulas, a modelagem numérica do solo reforçado com geocélula, fundamental para entender seu comportamento, ainda é pouco explorada.

Algumas características como: descontinuidades, grandes variações geométricas, baixa resistência à tração/cisalhamento, grande variação de permeabilidade, alta erodibilidade, são sempre consideradas ao se avaliar o solo como material de construção. Devido a características como essas, sempre se procurou realizar obras de engenharia em locais com solos mais homogêneos, sem a presença de água, mais resistentes, mesmo que isso representasse aumento no custo total da obra (VERTEMATTI, 2014).

Com o aumento da população mundial e a degradação do meio ambiente, encontrar locais para construção com solos homogêneos e resistentes tem sido cada vez mais difícil. Dessa forma, é comum que o solo local não atinja as exigências em projeto, tanto pela baixa capacidade de carga quanto por sua elevada compressibilidade ou plasticidade, sendo necessário de alguma forma melhorar ou reforçar o solo para viabilizar sua utilização.

O desempenho e a capacidade de suporte dos pavimentos dependem fundamentalmente das características e comportamento dos materiais de base e sub-base. Dentre os materiais utilizados para base tem-se como referência a utilização de brita graduada ou brita graduada tratada com cimento (para grandes cargas), no entanto, a utilização desses materiais pode se tornar inviável em certas regiões. Uma alternativa, nesses casos, é utilizar o solo do próprio local da obra. O reforço do solo, melhora as caracterísicas mecânicas da base criando camadas de base e sub-base capazes de resistir aos esforços causados pelo fluxo de veículos.

É importante notar que os geossintéticos quando utilizados como elemento de reforço utilizam de sua resistência à tração para reforçar e restringir deformações em estruturas geotécnicas ou granulares. O uso de dos geossintéticos nas camadas de base é uma alternativa viável econômica e ambientalmente, pois possibilita usar o próprio solo do local de construção do pavimento como matéria prima. Dispensando a necessidade de

escavar e retirar esse solo e trazer um novo material (brita graduada por exemplo, para ser utilizado).

O reforço com geossintéticos, uma técnica usada por mais de 40 anos, tem sido desenvolvido para melhorar a performance de estradas pavimentadas e não pavimentadas. Esse reforço tem sido utilizado para melhorar a capacidade de carga e o módulo da camada de base, reduzir a espessura da base, aumentar o tempo de vida útil do pavimento, reduzir custos operacionais e ainda diminuir recursos com a manutenção. Além de ser considerado uma opção sustentável para evitar a ruptura prematura dos pavimentos. (POKHAREL et al., 2018)

Geossintéticos planares como as geogrelhas e geotêxteis têm sido usados há vários anos para prevenir o movimento lateral no fundo ou no interior da camada da base. Devido à sua resistência, alongamento limitado e estrutura, são capazes de restringir movimentos laterais dos materiais de base, com os quais estão em contato. Apesar de serem eficientes em muitas aplicações de estabilização e suporte de carga, esses geossintéticos são eficazes apenas quando em contato com os materiais/solo da base. A prevenção do movimento lateral dos materiais da base acima e abaixo da linha de contato com os geossintéticos depende totalmente da qualidade do material da base.

A geocélula, no entanto, é uma solução alternativa que incorpora o conceito do confinamento em duas dimensões (comprimento e largura) e estende esse conceito à terceira dimensão (profundidade). O confinamento horizontal e vertical de toda a profundidade da camada de base representa uma melhora significativa na estabilização da camada de base e tem implicações importantes sobre custo-benefício e desempenho de longo prazo dos projetos.

A maioria das pesquisas encontradas recentemente sobre reforço com utilização de geocélula se concentram na aplicação de materiais com as aberturas com dimensões entre 20 a 40 cm, formadas por tiras de material geossintético grampeadas, muito conhecidas comercialmente como *geoweb*.

A presente pesquisa, por sua vez, busca avaliar influência no comportamento mecânico causada pela utilização de um reforço com aberturas menores na ordem de 5 cm de diâmetro e paredes mais espessas e rígidas.

1.2 OBJETIVOS

Avaliar o comportamento mecânico dos solos reforçados com geocélula utilizando modelos reduzidos e numéricos.

1.2.1 Objetivos Específicos

a) Avaliar a influência das propriedades mecânicas dos materiais utilizados (solo natural, solo da camada de reforço e geocélula)

b) Analisar a forma de ruptura das camadas de solos reforçados com geocélula;

c) Avaliar a variação da capacidade de carga dos solos reforçados e a distribuição de tensões e deformações nas camadas de reforço de sub-leito usando simulação numérica (ABAQUS).

2. GEOCÉLULA

2.1 INTRODUÇÃO

As geocélulas são um tipo de especial de geossintéticos usadas principalmente para reforço e confinamento do solo. Foram desenvolvidas originalmente pelo Corpo de Engenheiros do exército americano (USACE) na década de 70 para reforço rápido de solos não coesivos nos campos militares (YANG et al., 2012).

Atualmente as geocélulas comercialmente disponíveis são feitas de polietileno de alta densidade (HDPE) e nova liga polimérica (NPA). Podem ser encontradas de diversas formas e tamanho, mas sua forma mais comum é aproximadamente circular (POKHAREL ET AL. 2018). Para facilitar o transporte a maioria das geocélulas tem um formato tridimensional dobrável (Figura 1), que ao ser esticado tem formato parecido com um favo de mel, como mostra a Figura 2 (YANG et al. 2012).

Figura 1 – Geometria típica de uma geocélula

Fonte: Yang et al. (2010)

As geocélulas proporcionam um efeito de confinamento e conferem coesão ao solo, além de aumentar sua resistência e módulo de resiliência e melhorar as características cargadeformação de materiais mal graduados. O aumento da capacidade de carga se dá devido a rigidez horizontal do material da célula e as tensões de arco desenvolvidas na parede da geocélula (POKHAREL et al., 2018).

O comportamento global de uma camada de solo reforçada por geocélula é caracterizado pelas propriedades da geocélula utilizada como reforço, as características dos materiais de base e do subleito, e a interação entre geocélula e solo que contribuem para o confinamento horizontal e vertical do solo. A inclusão da geocélula em camadas de base é

considerada eficiente por proporcionar confinamento adicional ao material da base. (SUKU et al., 2016)

Fonte: Pokharel et al. (2018)

2.2 PROPRIEDADES MECÂNICAS

Chen et al. (2013) aponta que o confinamento proporcionado por geocélulas melhora a resistência ao cisalhamento do solo granular e, por sua vez, o aumento da resistência do solo proporciona melhor capacidade de suporte e / ou previne a erosão do solo. Esse comportamento faz com que seja possível aplicar as geocélulas em diversas situações como o controle da erosão de encostas e margens de rios, o aumento da capacidade de suporte de pavimentos e fundamentos, o reforço de terrenos e declives suaves e a proteção de margens e leitos de canal.

Avesani Neto et al. (2013) mostra que o incremento de resistência é causado pelo conjunto de alguns mecanismos que quando atuando de forma associada melhoram a capacidade de carga de um solo. Esses mecanismos são o efeito de confinamento e de membrana, que também existem nos geossintéticos usados como reforço planar, e o efeito laje (espraiamento de tensões).

2.2.1 Efeito de confinamento

O formato tridimensional da geocélula permite com que ela exerça sobre o material de enchimento utilizado um efeito de confinamento, restringindo o espalhamento lateral e aumentando a resistência de cisalhamento. A resistência interfacial desenvolvida no contato entre o solo e a geocélula, mobilizam a coesão aparente e o atrito da interface aumentando o confinamento lateral e diminuindo a deformação lateral inferior, o que melhora a distribuição de tensões no subleito. (ZHANG et al. 2010; MEHERJARDI e MOTARJEMI 2018).

As Figura 3 e Figura 4 ilustram o mecanismo do efeito de confinamento. O efeito de confinamento contribui com a capacidade de carga da camada reforçada de duas maneiras: pelo aumento da resistência e deformabilidade do solo de enchimento provocado pela tensão de atrito proveniente do contato do material de enchimento com as paredes da célula; e através das tensões horizontais que são induzidas na geocélula e dissipadas entre as células adjacentes, mobilizando as resistências passivas do solo confinado (AVESANI NETO, BUENO E FUTAI, 2013).

Figura 3 – Ilustração do efeito de confinamento: a) aplicação da carga; b) indução de tensões horizontais na parede da geocélula; c) mobilização de tensão cisalhante na

interface solo/geocélula

Fonte: Neto et al. (2013b)

Fonte: Adaptado de Zhang et al. (2010)

2.2.2 Efeito Laje (Espraiamento de tensões)

Avesani Neto et al. (2013b) descreve o efeito laje como um efeito de dispersão ou espraiamento das tensões verticais para a camada subjacentes graças à estrutura tridimensional de células interconectadas e preenchidas. O espraiamento faz com que a carga seja transferida para o solo de fundação atuando em uma maior superfície, conduzindo a menores valores de

tensão. Assim como o efeito de confinamento o efeito laje não depende de deslocamentos significativos para existir. A Figura 5 mostra o mecanismo da dispersão de tensões.

Figura 5 – Mecanismo de espraiamento de tensões provocado pelo efeito laje

Fonte: Neto et al. (2013b)

2.2.3 Efeito de membrana

O efeito de membrana atua melhorando igualmente a capacidade de suporte do solo de fundação e na redução dos deslocamentos. Esse efeito aparece quanto um geossintético colocado sobre uma camada de material compressível é submetido a um carregamento normal ao seu plano. O carregamento provoca no material de reforço uma deflexão em formato côncavo, semelhante a uma membrana. No entanto, graças a rigidez do material e suas extremidades ancorada, o reforço atua exercendo uma força para cima, ilustrada na Figura 6, contrária as cargas normais ao seu plano, redistribuindo-as e transferindo-as para suas extremidades ancoradas, mobilizando desta forma a resistência ao cisalhamento de interface reforço/solo (NETO et al., 2013b).

Figura 6 – Ilustração do efeito de membrana: a)aplicação de carga, b)manifestação de tensões cisalhantes na interface solo/geocélula devido a deformação do solo de fundação

Fonte: Neto et al. (2013b)

3. BASES GRANULARES REFORÇADAS COM GEOCÉLULAS

A maioria dos pavimentos encontrados no Brasil é considerado flexível, ou seja, sua estrutura é composta por revestimentos asfálticos e camadas de base, sub-base e reforço de subleito constituídas por materiais granulares ou solo, assentadas sobre o subleito. O subleito é constituído pelo solo natural do local ou o resultante de trabalhos de terraplanagem. A combinação de um subleito com baixa capacidade de suporte e camadas granulares heterogêneas pode levar o pavimento a apresentar sérias patologias, como o afundamento em trilha de rodas e o trincamento por fadiga do revestimento. (VERTEMATTI, 2014)

O uso das geocélulas como reforço nas camadas de base, graças às suas características mecânicas previamente apresentadas, pode aumentar a capacidade de suporte de todo o sistema do pavimento, proporcionando maior vida útil aos mesmos. A seguir serão apresentados estudos analíticos, laboratoriais e numéricos para prever o comportamento das camadas de base reforçadas com geocélula.

3.1 MÉTODOS ANALÍTICOS

Na literatura são encontradas algumas metodologias para prever a capacidade de carga de camadas de base reforçadas com geocélula, a seguir serão apresentados alguns métodos conhecidos:

3.1.1 Método de Koerner (1994)

O método de cálculo da capacidade de carga de uma camada de solo reforçada com geocélulas proposto por Koerner (1994) consiste em uma adaptação do mecanismo de equilíbrio limite plástico convencional utilizado no cálculo da capacidade de carga de fundações rasas sob carregamentos estáticos. A Figura 7 mostra a diferença das superfícies de ruptura para o solo não reforçado e reforçado.

Nos solos reforçados com geocélula a ruptura ocorrerá quando o material de enchimento tiver sua resistência ao cisalhamento na interface com as paredes da célula superada pela tensão atuante, tendendo a se deslocar para baixo e transferindo o carregamento para as camadas abaixo do reforço. Mesmo que as camadas abaixo tenham sua capacidade de carga superada, as cargas atuantes nas mesmas serão significamente menores do que a a carga aplicada devido ao efeito de redistribuição de tensões provocado pela utilização da geocélula.

Fonte: Adaptado de Koerner (1994)

Para o cálculo da capacidade de carga das camadas não reforçadas, o autor fez uso do equacionamento de Terzaghi, como mostra a Eq. 1.

$$p_u = cN_cS_c + qN_qS_q + 0, 5B\gamma N_{\gamma}S_{\gamma}$$
 Eq. 1

Koerner (1994) adicionou ao equacionamento de Terzaghi um termo correspondente ao ganho da capacidade de carga provocado pelo efeito de confinamento induzido ao solo devido a presença da geocélula, resultando nas Eq. 2 e Eq. 3.

$$p_r = p_u + 2\tau Eq. 2$$

$$p_r = cN_cS_c + qN_qS_q + 0,5B\gamma N_\gamma S_\gamma + 2\tau$$
 Eq. 3

Em que:

 p_r é a capacidade do solo reforçado;

 p_u é a capacidade do solo não reforçado

c é a coesão do solo de fundação

q sobrecarga atuante

 γ é peso específico do solo de fundação

B é a largura da sapata;

 N_c , N_q , N_γ são os fatores de capacidade de carga

 S_c, S_q, S_γ são os fatores de forma da sapata

au é a resistência ao cisalhamento da interface entre as paredes da célula e o material de enchimento

Os fatores de de capacidade de carga e de forma dependem do ângulo de atrito do solo e da forma e dimensão da sapata. Enquanto o valor da resistência ao cisalhamento pode ser calculado pela Eq. 4.

$$\tau = \sigma_h \tan \delta$$
 Eq. 4

Em que:

 σ_h é a tensão horizontal atuante nas paredes da geocélula, adotada pelo coeficiente de empuxo ativo da teoria de Rankine;

 δ é o ângulo de atrito entre as paredes da geocélula e o material de enchimento, sugerido pelo autor como 15° a 20° para areia e PEAD e 25° a 35° para areia e geotêxtil não tecido.

3.1.2 Método da Presto (2008)

A empresa americana produtora de geossintéticos, Presto, publicou em 2008 um manual com uma sugestão de um método teórico para cálculo da capacidade de carga de solos reforçados com geocélulas baseado em uma formulação empírica de projeto de estradas não pavimentadas. O método apresentado é indicado para estradas de baixo tráfego e não-pavimentadas.

O método consiste em determinar os requisitos de espessura da camada de base com e sem o reforço de geocélula. Os coeficientes de capacidade de carga derivados empiricamente são usados primeiramente para determinar a tensão máxima permitida em um subleito com resistência ao cisalhamento conhecida ou estimada. A tensão máxima permitida é aquela tensão que causaria falha local de punção/cisalhamento do subleito sob condições de carga sustentada.

Como as cargas granulares do pavimento são transitórias, a resistência efetiva do solo é tipicamente maior do que seria sob carga estática. Portanto, a tensão máxima permitida é a tensão limite para fins de projeto. A teoria de Boussinesq é então usada para determinar a profundidade necessária da cobertura granular abaixo da carga da roda de projeto para garantir que a tensão máxima permitida não seja excedida. A seguir são apresentados os passos necessários para o cálculo da espessura do pavimento: 1) Determinar a resistência ao cisalhamento do subleito (c_u)

O método recomenda encontrar c_u através da relação com o CBR dada em formato de tabela.

2) Determinar a tensão máxima permitida no subleito (q_a)

A tensão máxima permitida no subleito é dada pela equação 1:

$$q_a = N_c c_u$$
 Eq. 5

Em que N_c é determinado pelo U.S Forest Service em função do tráfego e varia de 2,8 a 3,3.

3) Determinar a espessura requerida da camada de base sem reforço (z_u)

$$z_u = \frac{R}{\sqrt{\frac{1}{\left(1 - \frac{q_u}{p}\right)^2} - 1}}$$
 Eq. 6

Em que R é o raio da área carregada e p é a pressão aplicada

4) Determinar a espessura requerida da camada de base reforçada (z_g)

Primeiramente deve-se escolher a profundidade na camada de base onde será posicionada o topo da geocélula (z_t) , depois deve-se calcular a tensão vertical no topo da geocécula, a partir da equação:

$$\sigma_{vt} = p \left[1 - \left(\frac{1}{1 + \left(\frac{R}{z_t} \right)^2} \right)^{3/2} \right]$$
 Eq. 7

O próximo passo é calcular a tensão vertical na base da camada de geocécula, z_b é a soma de z_t com a espessura da camada de geocélula.

$$\sigma_{vb} = p \left[1 - \left(\frac{1}{1 + \left(\frac{R}{z_b} \right)^2} \right)^{3/2} \right]$$
 Eq. 8

Deve se então calcular as tensões horizontais no topo e na base da camada de geocélula utilizando o coeficiente de empuxo ativo k_a

$$\sigma_{ht} = K_a \sigma_{vt}$$
 Eq. 9

$$\sigma_{hb} = K_a \sigma_{bt}$$
 Eq. 10

A tensão horizontal média entre topo e base da geocélula é dada por:

$$\sigma_m = \frac{(\sigma_{ht} + \sigma_{hb})}{2}$$
 Eq. 11

Agora, é possível calcular a redução de tensão (σ_r) provocada no solo graças ao uso da geocélula, a partir da Eq. 12:

$$\sigma_r = 2\left(\frac{H}{D}\right)\sigma_m tan\delta$$
 Eq. 12

Em que, H é a altura da camada de geocélula;

D é o diâmetro efetivo da abertura da geocélula; e

 δ é o ângulo de resistência ao cisalhamento entre a parede da geocélula e o material de enchimento, pode ser encontrado através de ensaios ou estimado a partir do ângulo de atrito do material de enchimento.

Sendo assim a tensão resistente da camada reforçada será dada através da Eq. 13:

$$q_G = q_a + \sigma_r$$
 Eq. 13

E a espessura necessária para a camada reforçada é dada pela Eq. 14:

$$z_G = \frac{R}{\sqrt{\frac{1}{\left(1 - \frac{q_G}{p}\right)^{2/3}} - 1}}$$
 Eq. 14.

3.1.3 Método da coesão aparente (1993)

Bathurst e Karpurapu (1993) propuseram considerar a camada de solo reforçado com geocélula como uma camada de alta coesão aparente. Os autores consideram essa coesão elevada devido ao efeito de confinamento do material de preenchimento, da resistência das paredes da geocélula e do atrito entre a parede da geocélula e o material de enchimento.

A Figura 8 apresenta o mecanismo considerado no método, com círculos de Mohr-Coloumb para o solo não-reforçado, um círculo que representa o acréscimo de tensões devido ao confinamento provocado pela inclusão da geocélula, e a combinação dos dois que justifica o aparecimento da coesão aparente. A coesão aparente encontrada pode ser descrita pela Eq. 15:

$$c_r = \frac{\Delta \sigma_3}{2} \sqrt{K_p}$$
 Eq. 15.

Onde K_p é o coeficiente de empuxo passivo e o acréscimo de tensões devido ao confinamento do material $\Delta \sigma_3$ pode ser estimado pela teoria das membranas elásticas (Eq. 16).

$$\Delta \sigma_3 = \frac{2M}{d_0} \left(\frac{1 - \sqrt{1 - \varepsilon_a}}{1 - \varepsilon_a} \right)$$
 Eq. 16.

Sendo M o módulo secante do material que compõe a geocélula, d_0 a abertura das células e ε_a a deformação axial na célula.

Figura 8 – Círculo de Mohr para o cálculo da coesão aparente devido ao reforço

Fonte: Neto et al. (2013b)

3.1.4 Método Zhang (2010)

Zhang et al. (2010) apresenta um equacionamento para previsão da capacidade de carga de uma camada de solo reforçada com geocélula levando em conta, um acréscimo da capacidade devido ao efeito de dispersão de tensões verticais ou efeito laje e um acréscimo devido ao efeito de membrana do reforço.

A Figura 9 ilustra o efeito de dissipação de tensões, que causa a transformação de p_s em p_r , e o acréscimo de tensões devido ao efeito laje Δp_1 é dado pela diferença entre eles, como descrito nas equações 17 e 18 a seguir:

$$p_r = \frac{b_n + 2h_c tan\theta_c}{b_n} p_s$$
 Eq. 17

$$\Delta p_1 = p_r - p_s = \frac{2h_c tan\theta_c}{b_n} p_s$$
 Eq. 18

34

Onde onde p_r é a caga devido ao efeito de dispersão de tensão vertical; b_n é a largura da carga uniforme p_s , $h_c \in \theta_c$ são a altura e o ângulo de dispersão do reforço da geocélula, respectivamente.

Figura 9 – Espraiamento de tensões verticais graças ao reforço de geocélula

Fonte: Zhang et al. (2010)

A segunda parcela de incremento adicionada pelo reforço de geocélula graças ao efeito de membrana, é ilustrado na Figura 10 e pode ser calculado por:

$$\Delta p_2 = \frac{2Tsen\alpha}{b_n}$$
 Eq. 19

Onde T é a resistência à tração do reforço e pode ser calculado pela equação 20:

$$T = E_c \varepsilon h_g$$
 Eq. 20

Onde E_c é o módulo de tração do material da geocélula, ε é a deformação de tração, h_g é a altura da camada de geocélula, e α é o ângulo entre a força de tração e o plano horizontal.

Figura 10 - Efeito de membrana no reforço de geocélula

Fonte: Zhang et al. (2010)

Temos então que a capacidade de carga total da camada é dada pela soma da capacidade de carga do solo não reforçado e os dois incrementos adicionados pela presença do reforço.

$$p_{rs} = p_s + \Delta p_1 + \Delta p_2 = p_s + \frac{2h_c tan \theta_c}{b_n} p_s + \frac{2Tsen\alpha}{b_n}$$
 Eq. 21

35
3.1.5 Estudos Recentes

Neto et al. (2013) desenvolveu um método para prever a capacidade de carga de solos reforçados com geocélulas, levando em consideração a capacidade de carga do solo de fundação e os mecanismos de reforço da geocélula (a dissipação de tensões e o efeito de confinamento do solo). O autor compara o método proposto com três métodos de cálculo já existentes na literatura, o método de Koerner, o método de Presto e o método da coesão aparente e ainda com resultados experimentais. A Eq. 22 expressa o método proposto:

$$p_r = p_u + (p - p^*)$$
 Eq. 22

Onde:

 p_r é a capacidade de carga do solo reforçado com geocélula;

 p_u é a capacidade de carga do solo não-reforçado;

p é a tensão atuante no topo da camada de geocélula;

 p^* é a tensão atuante na base da camada de geocélula.

Sendo p^* definido pela Eq. 23 a seguir:

$$p^* = \left(p - 4\frac{h}{d}k_0 p t a n \partial\right)$$
 Eq. 23

Onde:

h é a altura da geocélula

d é o tamanho da abertura da geocélula

 k_0 é o coeficiente de empuxo lateral em repouso

 ∂ é o ângulo da interface de cisalhamento entre a parede da geocélula e o solo de preenchimento.

O uso do método proposto por Neto et al. (2013) se mostrou eficiente ao prever resultados para a capacidade de carga submetido a diferentes condições. Quando comparado aos métodos mais antigos, tanto para argila quando para areia o método se mostrou mais ajustado do que os demais e também quando comparado com resultados práticos existentes na literatura, como pode ser confirmado nas Figura 11 e Figura 12 que mostram os resultados experimentais e os calculados pelos diferentes métodos.

Figura 11 – Comparação entre a capacidade de carga obtida experimentalmente e a calculada pelo método proposto e outros

Fonte: Neto et al. (2013)

Neto (2019) apresentou uma metodologia para determinar os assentamentos superficiais da camada de solo reforçada com geocélula e as tensões verticais propagadas para o subleito na interface de camadas. Baseado na teoria de espessuras equivalentes, que é uma aproximação da teoria da elasticidade para sistemas em camadas, a Eq.24 generalizada para determinar os assentamentos em um sistema de duas camadas composto por uma camada de solo reforçado com geocélula sobre o subleito foi proposta.

$$w = \frac{\sigma D(1-v^2)I_w}{E_s}F$$
 Eq.24

Sendo

w – Deslocamento (recalque) do sistema de duas camadas

 σ - Tensão aplicada na superfície

- D Diâmetro da placa de aplicação da carga
- ν Coeficiente de Poison da camada de subleito
- I_w Fator de forma e rigidez da área carregada
- E_s Módulo de elasticidade da camada de subleito
- F Fator de deflexão para um sistema de duas camadas

Esta equação foi aplicada por Neto (2019), juntamente com outros métodos de cálculo, em um ensaio de prova de carga previamente publicado, permitindo através da retroanálise a determinação do módulo de deformação da camada de solo reforçado e a propagação das tensões verticais para o subleito. A Figura 12 mostra que o método proposto se mostrou eficiente quando comparado a outros métodos de cálculo. Pode-se concluir que a teoria apresentada no trabalho é simples e eficiente para reinterpretar o resultado de uma prova de carga e avaliar o módulo de elasticidade do solo e a distribuição de tensões verticais.

Maheshwari e Babu (2017) apresentam uma abordagem analítica simples que idealiza o reforço de geocélulas como uma viga submetida a cargas simétricas verticais e solo de fundação como molas não lineares Winkler. Um estudo paramétrico detalhado indicou a influência do peso do material de enchimento, cargas aplicadas, módulo de reação do subleito e rigidez à flexão do reforço. A precisão do modelo proposto foi testada comparando os resultados encontrados com resultados teóricos e experimentais encontrados na literatura. Os resultados mostraram que o peso do material de enchimento pode ser negligenciado. O comportamento não-linear do solo deve ser considerado, pois a análise mostrou que a deflexão encontrada foi mais alta do que considerando o comportamento linear. Um parâmetro que se mostrou importante e merece atenção é o atrito entre a geocélula e o solo de fundação. O trabalho apresenta gráficos úteis na análise e projeto de pavimentos reforçados com geocélula são apresentados relacionando a deflexão e o momento fletor encontrados com diversos parâmetros de entrada.

Tafreshi et al. (2015) apresentam uma solução analítica, baseada na teoria do sistema multicamadas do solo, para estimar a relação pressão-deslocamento de um carregamento circular aplicada sobre essas camadas de reforço com geocélula, como apresentado na Figura 13. Um modelo analítico que incorpora as características elásticas do solo e do reforço foi desenvolvido para prever a deformação e pressão de confinamento propagada ao longo de um sistema multicamadas é proposto. O modelo proposto foi validado por resultados de testes de carga de placas em leitos de fundação não reforçados e reforçadas com geocélulas. As comparações entre os resultados dos testes de carga de placa e o método analítico proposto refletiram uma exatidão e consistência satisfatórias, especialmente nas taxas de liquidação esperadas e práticas. Além disso, para uma melhor avaliação do comportamento das fundações reforçadas com geocélulas, um estudo paramétrico foi realizado. A Figura 14 demonstra a boa aproximação encontrada pelo autor quando comparada com resultados experimentais.

Fonte: Neto (2019)

Figura 13 – Esquema de reforço com múltiplas camadas de geocélula

Fonte: Tafreshi et al. (2015)

Figura 14 – Comparação de resultados experimentais e analíticos para diversas

Fonte:Tafreshi et al. (2015)

3.2 ESTUDOS EXPERIMENTAIS

3.2.1 Provas de carga estáticas

Shadmand et al. (2018) compara o comportamento de areia reforçada por dois métodos, o de geocélula tradicional (FGR), e a geocélula com abertura (GOR). Para tanto, realizou uma série de ensaios de prova-de-carga estática em grande escala. Durante os ensaios um tanque de concreto com 3000 mm de largura, 3000 mm de comprimento e 2000 mm de altura foi utilizado. A carga foi aplicada por uma placa com dimensões 500 x 500 mm e 30 mm de espessura. As Figura 15 e Figura 16 apresentam o arranjo do ensaio. No total foram realizados 18 testes, o carregamento foi realizado de acordo com o procedimento recomendado pela ASTM-D1196M (2012), com os incrementos de carga aplicados e mantidos até apresentarem uma taxa menor que 0.03 mm/min por pelo menos 3 minutos consecutivos. Cada

teste levou 76 horas de trabalho. Durante os testes foram variados os seguintes parâmetros: a profundidade de geocélula (u), o tamanho da abertura na geocélula para o reforço tipo GOR (w), a densidade relativa da areia (Dr) e o número de camadas de geocélula (N). Os resultados foram obtidos em função de parâmetros adimensionais, sendo mantido constantes as relações entre a largura da camada da geocélula (b), o tamanho da abertura da geocélula (d) e altura da camada da geocélula (H) pela largura do carregamento (B), sendo b/B = 5, d/B = 0.44 e H/B=0.3. Outros parâmetros como h/B, u/B, w/B e Dr foram variados durantes os ensaios, a combinação de parâmetros utilizada e o número de ensaios está descrita na Tabela 1.

Figura 15 – Arranjo geral do ensaio

Fonte: Adaptado de Shadmand et al. (2018)

Figura 16 - Tanque de ensaio e camada de geocélula

Fonte: Adaptado de Shadmand et al. (2018)

	I ubelu I	Deta		pi ogi anna av	cinsulos	
Série de Testes	Tipo de Reforço	N	u/B, h/B	w/B	Dr (%)	N° de testes
1	Areia não- reforçada	-	-	-	35 ,65	2 ^a +1 ^b
2	FGR	1	0.1	0	35, 65	2 ^a +1 ^b
3	GOR	1	0.1	0.92	35, 65	2 ^a +1 ^b
4	GOR	1	0.1, 0.3, 0.54, 0.9	0.92	65	3 ^a +1 ^b
5	GOR	1	0.1	0.92, 1.36, 1.84	35	2 ^a +1 ^b
6	FGR e GOR	2	u/B = h/B $= B = 0.1$	0, 0.92	35	2ª

Tabela 1 – Detalhes sobre o programa de ensaios

^a Número de testes principais

^b Número de testes para validação dos resultados

Fonte: Adaptado de Shadmand et al. (2018)

Shadmand et al. (2018) encontraram resultados comprovando a melhora na capacidade de carga imposta pela presença da geocélula. As geocélulas GOR com abertura w/B = 0.92 obtiveram resultado muito semelhante ao comportamento das geocélulas sem abertura FGR, apresentando uma diferença máxima na ordem de 6 a 8%, sendo assim a utilização da geocélula tipo GOR se mostrou uma alternativa mais ecômica de reforço. A Figura 17 traz as curvas que relacionam a tensão aplicada e o coeficiente de recalque obtidas através das provas de carga realizadas. Nota-se na Figura 17-a, que as geocéluas com abertura de 0,92 B apresentam praticamente os mêsmos níveis de melhoria do que as geocélulas sem abertura. Enquanto analisando a Figura 17-b constatou-se que a partir de uma profundidade maior do que u/B = 0.3 a capacidade de carga imposta pelo reforço passa a diminuir.

Mehrjardi et al. (2019), realizaram uma série de provas de carga em placa com o objetivo de obter uma melhor compreensão do comportamento do solo reforçado com geocélulas. Durante os testes, a carga aplicada e os assentamentos da superfície do solo foram registrados para avaliar a resposta dos sistemas. O equipamento utilizado para realizar as provas de cargas pode ser visto na Fonte: Adaptado de Mehrjardi et al. (2019)

Figura 18. Ao todo foram realizados 36 ensaios alterando os parâmetros: tamanho de partícula do solo D50 = 3mm e cascalhos com D50 = 6, 12 e 16mm, (S3, G6, G12 e G16, respectivamente), os estados de reforço (reforçado (Re) e não reforçado (Ur)) e tamanho da

placa de carga (B = 80, 120 e 150 mm). Como reforço foram utilizadas dois tipos de geocélula a GC 55 com células de tamanha 55 mm x 55 mm e a GC110 com células de tamanho 110 x 50 mm. A profundidade de aplicação da geocélula (u), a largura das geocélulas sob a placa de carregamento (L) e a altura da camada de solo na caixa (H) também foram consideradas nos ensaios, a Tabela 2 traz as combinações de parâmetros utilizadas em cada ensaio.

Figura 17 – Curva pressão aplicada x coeficiente de recalque para: a)Dr = 35% e b) Dr

Fonte: Adaptado de Shadmand et al. (2018)

Teste N°		Reforço	Diâmetro	u	L	Н		
	Tipo de	e solo		-	da placa	(mm)	(mm)	(mm)
S3	G6	G12	G16	_	(mm)			
1 ^a	10 ^a	19 ^a	28 ^a	Sem	80	-	-	510
2	11	20	29	- reforço	120	-	-	510
3	12	21	30	_	150	-	-	510
4	13	22	31	"GC55"	80	8	320	510
5 ^a	14 ^a	23	32	_	120	12	480	510
6	15	24	33	_	150	15	600	510
7	16	25	34	"GC110"	80	8	320	510
8 ^a	17 ^a	26 ^a	35	_	120	12	480	510
9	18	27 ^a	36 ^a	_	150	15	600	510
^a Ensaios 1	repetidos							

Tabela 2 – Ensaios realizados por Merjahrdi

Fonte: Adaptado de Mehrjardi et al. (2019)

Figura 18 – Representação esquemática do tanque de ensaio: a) Seção Y-Z, b) Seção X,Y

Fonte: Adaptado de Mehrjardi et al. (2019)

Mehrjardi et al. (2019) concluíram que as geocélulas são muito promissoras como meio de aumentar a capacidade de suporte das fundações, em seu estudo foi encontrada uma melhora na capacidade de carga com a aplicação da geocélula de aproximadamente 5 vezes em relação ao solo não reforçado. A proporção recomendada entre o tamanho da abertura da geocélula e o tamanho médio do grão é de 15 para 1. Os melhores resultados obtidos para o reforço mostram que a largura da base deve estar na faixa de 13 a 27 (20 em média) vezes de tamanho de grão médio de material de aterramento. Concluiu-se também, que o aumento do tamanho dos grãos dos materiais de enchimento melhora tanto o atrito quanto a coesão mobilizada na interface, independentemente da existência de reforço. A Figura 19 apresenta alguns dos resultados obtidos através das provas de carga, é possível observar um expressivo aumento na capacidade de carga provocado pelo uso das geocélulas independente do tipo de solo usado como enchimento, também é notável que a geocélula GC55 com aberturas menores se mostra mais eficiente do que a geocélula do tipo GC110.

Tafreshi, Sharifi e Dawson (2016) apresentam uma comparação entre camadas de areia reforçadas com camadas de geotêxtil planar e geocélula, produzidas com o mesmo material. Os testes foram realizados em um tanque com dimensões 1000 mm x 1000 mm x 1000 mm, o fundo e três faces de MDF, e a face da frente feita de acrílico, o que permite quando necessário a observação e a medição abaixo da superfície de deformação plana. A carga foi aplicada sobre uma placa com 112,8 mm de diâmetro e 20 mm de espessura. O equipamento utilizado para os ensaios e a disposição das camadas de reforço podem ser vistos nas Figura 20 e Figura 21, respectivamente. Os ensaios foram realizados variando os seguintes parâmetros: Número de

camadas de reforço com geocélula (N_g) ; número de camadas de reforço com geotêxtil (N_p) ; distância entre as camadas de geocélula (h_g) ; distância entre as camadas de geotêxtil (h_p) , o espaço entre as camadas de reforço foi decrito em função da relação entre a distância e o diâmetro da placa de carregamento (D). As variações dos ensaios podem ser observadas na Tabela 3.

Figura 19 – Variações das curvas carga-deslocamento para areias: a) e b) não reforçada, c) e d) reforçada com GC55, e) e f) reforçada com GC110; (a,c, e e representam solos de enchimento G6, e b,d, e f representam solo de enchimento G12)

Fonte:Mehrjardi et al. (2019)

Série de Ensaios	Tipo de reforço	Ng/Np	hg/D ou hp/D	N° de ensaios	Objetivo dos ensaios
1	Não reforçado	-	-	1 + 2 (repetidos)	Quantificar a melhoria causada pelos reforços
2	Reforço com	1	-	1 + 2 (repetidos)	Encontrar o valor ótimo de hg/D e
3	geocélula	2	0.18*, 0.27*, 0.36**, 0.45*, 0.7, 1, 1,24	7 + 5 (repetidos)	estudar o efeito do número de camadas de
4		3*, 4*	0.36	2 + 2 (repetidos)	geoceiuia
5	Reforço com	1	-	1 + 1 (repetidos)	Encontrar o valor ótido de hp/D e
6	geotêxtil	2	0.22**,0.32*,0.4**,0.5*,0.66*,0.94,1.28	7 + 5 (repetidos)	estudar o efeito do número de camadas de geotêxtil
7		3*, 4*	0.4	2 + 2 (repetidos)	
*Testes repo	etidos duas	vezes			
**Testes rep	petidos três	vezes			

Fabela 3 –	Combinaç	ão entre os	parâmetros	para realiza	ção dos	ensaios

Fonte: Adaptado de Tafreshi, Sharifi e Dawson (2016)

Os resultados encontrados por Moghaddas Tafreshi et al. (2016) mostram que a eficiência do reforço diminuiu com o aumento do número de camadas. A pressão aplicada pelo coeficiente de recalque para diferentes configurações dos ensaios está na ilustrada na Figura 22. O reforço com geocélulas proporciona um sistema mais eficaz e mais rígido capaz de suportar a maiores cargas do que o solo reforçado com várias camadas de geotêxtil plano, além de reduzir consideravelmente a quantidade de material geotêxtil utilizado no reforço.

Figura 20 – Representação esquemática do equipamento utilizado para o ensaio

Fonte: Adaptado de Tafreshi, Sharifi e Dawson (2016)

Figura 21 – Esquema do reforço com multicamadas: a)geocélula b)geotêxtil planar

Fonte: Adaptado de Tafreshi, Sharifi e Dawson (2016)

Figura 22 – Variação do recalque pela pressão aplicada para as várias situações de reforço

Fonte: Adaptado de Tafreshi, Sharifi e Dawson (2016)

3.2.2 Provas de carga cíclicas

Pokharel et al. (2018) estudou a influência da inserção de única ou múltiplas camadas de geocélula preenchidas com diferentes materiais em camadas de base. Para o experimento, foi utilizada geocélula de NPA e três materiais de enchimento diferentes. O primeiro e mais barato material foi areia comum extraída do rio Kansas, o segundo material AB-3 é um agregado de calcário esmagado muito utilizado como base de estradas não-pavimentadas no Kansas, o terceiro e último material, QW, é um resíduo produzido durante a produção de agregados em pedreiras, seu uso visa atribuir uma utilização sustentável para os resíduos produzidos pelas pedreiras.

Para realização dos ensaios apresentados por Pokharel et al. (2018) foi utilizado um equipamento de média escala, suas dimensões (em milímetros) podem ser verificadas na Figura 23. O ensaio foi realizado para um único módulo de geocélula e para geocélulas múltiplas (Figura 24). A carga cíclica foi aplicada a 1 min / ciclo. A carga variou de 0 kPa para o máximo (345 kPa ou 552 kPa) em 15 s, depois mantida por 20 s antes do descarregamento que foi realizado em 15 s e mantida nula por 20 s antes de iniciar o próximo ciclo de carregamento. Para estabelecer consistência na comparação, todos os testes foram encerrados após 150 ciclos, exceto a areia não reforçada que não suportou a carga.

Figura 23 – Layout da caixa utilizada nos ensaios

Fonte: Adaptado de Pokharel et al. (2018)

Fonte: Adaptado de Pokharel et al. (2018)

Pokharel et al. (2018) concluíram que o reforço de geocélula reduziu significativamente a deformação permanente em comparação com as bases não reforçadas em todos os materiais de enchimento testados. Múltiplas geocélulas apresentaram maior redução da deformação permanente do que uma geocélula única. A melhora causada pelo reforço em função do Fator de Melhoria de Tráfego (TBR – Traffic Benefit Ratio) medido pela razão do número de ciclos necessário para levar a base reforçada a ruptura pelo número de ciclos que leva a base não-reforçada a ruptura pode ser observada na Tabela 4. As bases QW e AB-3

reforçadas com geocélula apresentaram uma maior porcentagem de deformação elástica do que as bases não reforçadas devido à contribuição da geocélula, atingindo 90% de deformação elástica após os primeiros ciclos (em sua maioria, 10 ciclos). A Figura 25 mostra o desempenho dos reforços sobre os três tipos de materiais diferentes.

Material de enchimento	Tipo de Reforço	Máxima pressão aplicada (kPa)	TBR
QW	Geocélula única	552	8.0
QW	Geocélula múltipla	552	12.0
AB-3	Geocélula única	552	8.5
AB-3	Geocélula múltipla	552	12.5

Tabela 4 – Fator de melhoria do Tráfego

Fonte: Adaptado de Pokharel et al. (2018)

Fonte: Adaptado de Pokharel et al. (2018)

Tafreshi e Dawson (2012) realizaram um estudo experimental composto por 46 provas-de-carga em camadas de solo arenoso reforçadas com geocélulas de diferentes alturas e não reforçada, a configuração das provas de carga pode ser vista na Tabela 5. Para analisar o comportamento do solo submetido a carga cíclica foi feita uma combinação de uma carga

estática de 120 kPa com uma carga cíclica de amplitude igual a 30% da carga estática. O equipamento utilizado para realização dos ensaios está ilustrado na Figura 26.

Série de	Tipo do	Tipo de reforco	Valores	s ou los nos e	parâ nsaios	metros	N° de ensaios
ensaios	ensaio		$\frac{\Delta q_{din}}{\Delta q_{est}}$	H/B	u/B	b/B	
1	Estático	Sem reforço	-				1+1 ^a
2		Reforçado	-	0.33, 0.66, 1.33		3.2	3+2ª
3	Cíclico	Sem reforço	20%, 30% e 50%	Sem ref	orço		3+2 ^a
4		Reforçado	20%	0.66	0, 0.1, 0.25, 0.5, 1	3.2	5+2ª
5		Reforçado	20%, 30% e 50%	0.66	0.1	1.2, 2.1, 3.2 e 4.2	12+3ª
6		Reforçado	20%, 30% e 50%	0.33, 0.66, 1.33	0.1	3.2	9+3ª

Tabela 5 – Combinação entre os ensaios estáticos e dinâmicos

Fonte: Adaptado de Tafreshi e Dawson (2012)

Os resultados obtidos por Tafreshi e Dawson (2012) comprovam a eficiência do reforço com geocélula. A Figura 27 compara as curvas carga x deslocamento do solo não reforçado e reforçado com geocélulas de diferentes alturas submetido a carga estática. O desempenho da geocélula foi comprovado, tendo sido observada diminuição na deformação elástica do solo quando reforçado e também uma melhoria na capacidade de carga. O estudo traz aindexa, diversas conclusões como a altura ideal da geocélula, a melhor posição dentro da camada de solo, e a melhor relação entre a rigidez do solo e a rigidez da geocélula.

Fonte: Adaptado de Tafreshi e Dawson (2012)

Figura 27 – Variação do coeficiente de recalque pela pressão aplicada para camadas reforçadas e não-reforçadas submetidas à carga estática

Fonte: Adaptado de Tafreshi e Dawson (2012)

Yang et al. (2012) apresenta um ensaio acelerado de pavimento para seções não pavimentadas, envolvendo o reforço com geocélula em bases compostas por material arenoso. Para a realização do trabalho foram construídas quatro seções de pavimentos, as seções 1 e 4 não-reforçadas e as seções 2 e 3 compostas por areias reforçadas com geocélula de NPA, a Figura 28 traz os perfís das seções. Para realizar o ensaio foi construído um equipamento de concreto com dimensões 6.1 m de comprimento, 4.9 m de largura e 1.8 m de profundidade como pode ser visto na figura 24.

As seções avaliadas por Yang et al. (2012) receberam uma carga de 80 kN (a configuração da aplicação de carga pode ser vista na Figura 29) aplicadas por rodas móveis com velocidade de 11.3 km/h com uma frequência de 10 passadas/min. No total as rodas passaram pelas seções 5000 vezes. O deslocamento foi medido em função do numéro de passadas das rodas. Cinco *strain gages* foram posicionados na metade da altura da camada de geocélula, em posições horizontais expostas na Figura 29, com o intuito de medir a tensão de tração sofrida pela geocélula sob o carregamento de tráfego.

Figura 28 – Seções dos perfis estudados

Fonte: Adaptado de Yang et al. (2012)

Ao analisar o deslocamento de cada seção ensaiada Yang et al. (2012) observou um aumento muito grande do deslocamento na seção 3 em comparação a seção 4 que tinha aproximadamente a mesma espessura e ainda não apresentava o uso de reforço. Para investigar o que aconteceu, as geocélulas tanto da seção 2, quanto da seção 3 foram retiradas para serem avaliadas, notou-se então que enquanto a geocélula da seção 2 permanecia intacta a geocélula posicionada na seção 3 havia "estourado", a Figura 30 mostra o que aconteceu. Essa ruptura pode ser evitada utilizando camadas de geocélulas mais altas, como no caso da seção 2. Os *strain gages* colocados na seção 3 não foram capazes de medir a tensão devido à ruptura da geocélula, no entanto as medidas da seção 2 mostram que o maior valor de tração à qual a geocélula foi submetida foi de 2,5 kN/m. A Figura 31 mostra a comparação da profundidade de assentamento pelo número de passadas da roda das 4 seções estudadas.

Figura 29 – Configuração do ensaio: a) Vista em planta; b) Vista em corte

Fonte: Adaptado de Yang et al. (2012)

Fonte: Adaptado de Yang et al. (2012)

Figura 31 – Profundidade de assentamento x número de passadas

Fonte: Adaptado de Yang et al. (2012)

Thakur et al. (2017) aplicaram a geocélula como reforço em bases feitas com pavimento asfáltico reciclado (RAP). Para isso, nove ensaios de carga cíclica em larga escala foram conduzidos em bases RAP não reforçadas e reforçadas com geocélulas com três espessuras diferentes (150, 230 e 300 mm) sobre subleitos considerados fracos ou moderados para investigar a influência do confinamento da geocélula, espessura da camada base, resistência da camada de base e a resistência do subleito nas deformações permanentes e elásticas das bases de RAP. Para realização do ensaio, foi utilizada uma caixa metálica com dimensões 2 m x 2 m, as demais dimensões podem ser conferidas na Figura 32.

Figura 32 – Corte esquemático do equipamento de prova de carga cíclica

Fonte: Adaptado de Thakur et al. (2017)

Como resultado Thakur et al. (2017) mostrou que o reforço de geocélula causou uma melhora quanto à deformação permanente nas bases de RAP da ordem de 1,1 a 11,4, o aumento

da espessura da base pode provar uma melhoria da ordem de até 2,7. A geocélula traz mais beneficios quando aplicada sobre um subleito fraco. A resistência do subleito influencia diretamente no comportamento da camada de base, um subleito fraco provoca uma resposta instável nas camadas de base, enquanto um subleito resistente provoca uma resposta estável. A Figura 33 mostra a tensão vertical entre a base e o subleito nas bases com diferentes espessuras reforçadas e a base com 30 cm de espessura sem reforço. É possível observar na figura que mesmo as bases com menor espessura quando reforçadas apresentam um comportamento melhor do que a base de 30 cm.

Figura 33 – Tensão vertical na interface entre a base e o subleito: a) no centro; b) a 125

mm do centro

Fonte: Adaptado de Thakur et al. (2017)

3.2.3 Outros ensaios

Mehrjardi e Motarjemi (2018) estudaram as propriedades da interface geocélulamaterial de enchimento. O estudo consistiu em uma série de ensaios de larga escala de cisalhamento direto para investigar a influência das propriedades físicas do solo nas propriedades interfaciais de solos granulares reforçados com geocélula. Foram analisados solos grossos e mal graduados com tamanhos de partículas médias (3, 6 e 12 mm), diferentes tensões normais (100, 200 e 300 kPa) e diferentes densidades relativas (50 e 70%), resultando em 36 configurações de ensaio descritas na Tabela 6, o equipamento do ensaio pode ser observado na Figura 34. Para comparar as resistências desenvolvidas no plano de cisalhamento entre os solos reforçados e os não-reforçados, foram avaliados o ângulo de atrito, ângulo de dilatação e a coesão aparente.

A Tabela 7 traz os resultados apresentados por Mehrjardi e Motarjemi (2018) analisando o efeito que as variações das propriedades analisadas do solo provocaram nos parâmetros analisados no ensaio de cisalhemento. A Figura 35 é utilizada para ilustrar o efeito dos parâmetros efetivos nas características de cisalhamento da interface solo-geocélula, ilustrando o efeito de intertravamento que mobiliza a coesão aparente e o atrito na interface e o efeito de confinamento nos grãos dentro das células, produzindo um aumento da resistência ao cisalhamento da interface.

Figura 34 – a) Arranjo da geocélula na caixa de cisalhamento; b) Vista esquemática do aparelho de cisalhamento

Fonte: Adaptado de Mehrjardi e Motarjemi (2018)

Tipo de solo	Tam. do grão D50 (mm)	Densidade relativa Dr (%)	Tensão normal (kPa)	Ensaio N°	Condição não-reforçada	Ensaio N°	Condição reforçad a
Areia mal graduada	3	50	100	1	S3-UR-50-100	19	S3-R-50- 100
			200	2	S3-UR-50-200	20	S3-R-50- 200
			300	3	S3-UR-50-300	21	S3-R-50- 300
		70	100	4	S3-UR-70-100	22	S3-R-70- 100
			200	5	S3-UR-70-200	23	S3-R-70- 200
			300	6	S3-UR-70-300	24	S3-R-70- 300
Cascalho mal	6	50	100	7	G6-UR-50- 100	25	G6-R-50- 100
graduado			200	8	G6-UR-50- 200	26	G6-R-50- 200
			300	9	G6-UR-50- 200	27	G6-R-50- 200
		70	100	10	G6-UR-70- 100	28	G6-R-70- 100
			200	11	G6-UR-70- 200	29	G6-R-70- 200
			300	12	G6-UR-70- 300	30	G6-R-70- 300
	12	50	100	13	G12-UR-50- 100	31	G12-R- 50-100
			200	14	G12-UR-50- 200	32	G12-R- 50-200
			300	15	G12-UR-50- 200	33	G12-R- 50-200
		70	100	16	G12-UR-70- 100	34	G12-R- 70-100
			200	17	G12-UR-70- 200	35	G12-R- 70-200
			300	18	G12-UR-70- 300	36	G12-R- 70-300

Tabela 6 – Configuração dos ensaios

Fonte: Adaptado de Mehrjardi e Motarjemi (2018)

Figura 35 – Esquema dos parâmetros efetivos nas características de cisalhamento da

interface solo-geocélula

Fonte: Adaptado de Mehrjardi e Motarjemi (2018)

Parâmetros	Reforço	τ _{máx}	τ _{cv}	ф	c	Ψ
densidade Relativa	Não- reforçada	1	1	↑	$\frac{\uparrow D_{50} = 3 \text{ e } 6 \text{ mm}}{\text{cte } D_{50} = 12 \text{ mm}}$	1
	Reforçada	$\uparrow D_{50} = 3 e 6 mm$ $\downarrow D_{50} = 12 mm$	-	$\frac{\uparrow D_{50} = 3 \text{ mm}}{\text{cte } D_{50} = 6 \text{ e}}$ 12 mm	$\uparrow D_{50} = 3 e 6 mm$ $\downarrow D_{50} = 12 mm$	_ -
Tensão Normal	Não- reforçada	1	Ţ	Ļ	1	Ļ
	Reforçada	↑	ſ	\downarrow	↑	\downarrow
Tamanho médio do	Não- reforçada	1	Ţ	↑	1	1
grao	Reforçada	↑	1	↑	↑	1
Geocélula	Reforçada	\uparrow	1	Cte	\uparrow	1

· · · ·	Га	bela	7 –	Va	ariação	das	pro	pried	lades	s dos	solos
---------	----	------	-----	----	---------	-----	-----	-------	-------	-------	-------

Fonte: Adaptado de Mehrjardi e Motarjemi (2018)

3.3 SIMULAÇÃO NUMÉRICA

Apesar de existirem vários estudos experimentais sobre as geocélulas, a modelagem numérica do solo reforçado com geocélula, fundamental para entender seu comportamento, ainda é pouco explorada. Muitos dos estudos numéricos e analíticos são baseados em um modelo composto equivalente, onde os parâmetros do solo são melhorados para representar a resistência e a rigidez do solo confinado com geocélulas. Além disso, vários pesquisadores têm modelado o solo e a modelagem separadamente por meio da análise numérica. (OLIAEI e KOUZEGARAN, 2017)

A análise por elementos finitos possibilita o estudo do efeito de muitos parâmetros como o módulo de elasticidade do geossintético, a localização do geossintético dentro da camada de base, a espessura da base e a resistência do subleito. Resultados encontrados têm mostrado que o reforço de geossintético reduz as deformações laterais nas camadas de base e subleito graças ao efeito confinante. (ABU-FARSAKH et al., 2014)

É comum encontrar na literatura simulação numérica precedida por ensaios de laboratório, a realização de ensaios experimentais permite conseguir os parâmetros iniciais para calibração dos modelos numéricos, a partir disso torna-se mais fácil conseguir um modelo eficiente para testar outras variações.

3.3.1 Modelos Utilizados

Oliaei e Kouzegaran (2017) usaram a modelagem numérica feita no software FLAC 3D de uma camada de solo reforçado com geocélula para identificar a melhor posição da geocélula na camada de base, bem como as melhores altura, largura e profundidade de fixação para camadas de areia e argila. Para a simulação o solo de enchimento foi representado pelo modelo elástico perfeitamente plástico de Mohr Coloumb, já a geocélula e o reforço planar, foram modelados como o elemento de geogrelha estrutural existente no programa. O elemento de geogrelha é representado por um material isotrópico, elástico e linear. O subleito foi modelado com dimensões 3m x 3m x1.5m e a superfície de carregamento representando uma fundação quadrada com 0.5 m x 0.5m. A Figura 36 mostra os detalhes do modelo numérico, a simulação foi realizada para solo arenoso e argiloso. Foi realizada também uma comparação entre o desempenho de geocélulas e reforços geossintéticos planos e a comparação entre os resultados obtidos com resultados experimentais encontrados na literatura. Como resultado concluiu-se que é melhor colocar a geocélula próximo da superfície do solo, porém respeitando uma profundidade mínima. A altura ótima encontrada para a geocélula em uma camada de argila é de 30 a 50 % da altura da camada de fundação, enquanto em camadas de areia a altura ótima para camadas de areia é de 30 a 40%.

A Figura 37 traz os resultados encontrados por Oliaei e Kouzegaran (2017) comparando argila e areia não-reforçadas, reforçadas com as duas camadas de geogrelha e reforçadas com uma camada de geocélula. Nota-se que o reforço tridimensional obteve resultados mais satisfatórios do que o reforço planar composto pelo mesmo material. Essa

diferença pode ser explicada graças ao efeito de confinamento que a geocélula promove. Também, é observado que tanto para o reforço com geogrelha quanto com geocélula os solos granulares apresentaram melhor comportamento.

Figura 36 - Geometria do modelo numérico de solo reforçado: a) dimensões, b) geocélula; c) Vista lateral; d) Vista em planta; e) condições de contorno

Fonte: Adaptado de Oliaei e Kouzegaran (2017)

O trabalho apresentado por Tafreshi e Ghotbi (2017) traz um estudo numérico da eficiência do reforço com geocélula para reduzir a pressão e o deslocamento sobre blocos de EPS utilizados na construção de estradas. Para representar as propriedades plásticas no solo e no *geofoam* foi escolhido o modelo de Drucker-Prager. A geocélula foi representada por um modelo simples elástico. As propriedades escolhidas para os materiais estão expostas na Tabela 8. Para validar o modelo, uma malha de 71744 elementos hexaédricos lineares com integração reduzida (C3D8R) foi utilizado para representar o solo, e elementos lineares de membrana (M3D4R) foram escolhidos para a geocélula. A geocélula foi considerada "imersa" no solo para representar a interação entre eles, essa interação assume que solo e geocélula se deformam juntos.

Figura 37 – Comparação entre a performance da geocélula e geossintético planar (geogrelha), a)Pressão-deslocamento; b)Variação do BCR

Fonte: Adaptado de Oliaei e Kouzegaran (2017)

O maciço de solo recebe em um passo preliminar as tensões geostáticas, no próximo passo a carga é aplicada como pressão sobre a placa metálica. A interação entra a placa e o solo é considerada *frictionless* para o comportamento tangencial e *hard contact* para o comportamento normal. O *solver Explicit* foi escolhido para analisar o sistema e obter os resultados finais. Foi observado que a diferença entre o *Explicit* e *Standard* foi muito pequena, mas utilizando o *Explicit* se ganha tempo na simulação. As dimensões do modelo numérico foram escolhidas com base nas condições do laboratório para futuros ensaios. A caixa foi modelada com 2x2,5m e altura de 0,9 m, e a carga foi aplicada sobre uma placa metálica de 0,30 m de diâmetro, a geocélula foi posicionada no solo de modo a prevenir o contato com a placa, as características do modelo estão presentes na Figura 38.

Figura 38 – a) Geometria do modelo analisado; b) geometria da geocélula modelada no

Fonte: Adaptado de Tafreshi e Ghotbi (2017)

i ubelu o i i opi i eduades atimizadas para i epi esentar os inateriais na sinialação

	Material	Solo	EPS 30	Geocélula
Propriedades	Densidade (kg/m ³)	2000	30	333
Básicas	Módulo de elasticidade (MPa)	30	7.8	200
	Coeficiente de Poisson	.4	.17	.35
Propriedades	Ângulo de atrito	45	2	-
Plásticas	Coesão (kPa)	-	62	-
	Ângulo de dilatância	15	.1	-
	Tensão de escoamento (kPa)	18	-	-
	Coeficiente de fluxo de tensão	0.78	-	-

Fonte: Adaptado de Tafreshi e Ghotbi (2017)

Analisando os resultados de Tafreshi e Ghotbi (2017) sobre a capacidade de carga do solo não-reforçado e o reforçado com geocélula, é possível observar na Figura 39 que para pressão de até 400 kPa, o reforço não faz muita diferença no comportamento do material. No entanto, para pressões aplicadas maiores do que 400 a capacidade de carga para o solo com uso de geocélula aumenta pelo menos em 50%.

Figura 39 – Curva pressão aplicada x deslocamento para camadas de solo reforçadas e não-reforçadas

Fonte: Adaptado de Tafreshi e Ghotbi (2017)

3.4 ESTUDOS MISTOS: SIMULAÇÃO E LABORATÓRIO

3.4.1 Modelos numéricos e ensaios

Para investigar a eficácia do confinamento de geocélulas em aterros de lastro ferroviário, Satyal et al. (2018) realizaram um conjunto de provas de cargas em placas cíclicas em larga e simulações numéricas em um revestimento de lastro reforçado com geocélula sobreposto a um material de subleito fraco. Os ensaios e a simulação da prova de carga serviram de base para a posterior simulação de uma seção de rodovia. Para os ensaios de prova de carga foi utilizado um tanque metálico de dimensões 2 m x 2.2 m e 2 m de profundidade. Para a prova de carga o carregamento foi aplicado em uma frequência de 1 Hz e foram aplicados 1000 ciclos para cada etapa de carga. O modelo numérico foi elaborado no *software Abaqus* e respeitou as dimensões da prova de carga em laboratório. A camada de lastro foi modelada seguindo o modelo elasto-plástico de Drucker-Prager e foi representada por elementos C3D8R, enquanto a geocélula e o geotêxtil foram considerados materiais perfeitamente elásticos e modelados como elementos de membrana M3D4R. A Figura 40 mostra o modelo utilizado na modelagem para a prova de carga.

Fonte: Adaptado de Satyal et al. (2018)

Com os resultados obtidos da realização e modelagem da prova de carga de Satyal et al. (2018) realizaram um profundo estudo paramétrico das propriedades dos materiais e partiu então a modelagem de um típico aterro de ferrovia composto por lastro de 0,3 m de profundidade colocado sobre um subleito fraco. Esta seção foi colocada no topo de um subleito profundo de 2 m, profundidade suficiente para minimizar os efeitos de limite de estresse e mantida a 5 m de comprimento. O declive lateral do aterro do lastro foi mantido constante em 2 (H): 1 (V). A Figura 41 mostra o modelo, e para comparação, modelos semelhantes com uma seção de lastro de 0,45 e 0,6 m de profundidade e com 0,3 m de seção de lastro embutida no subleito foram modelados. Para todos os modelos, o arranjo de ancoragem foi mantido o mesmo.

O confinamento aplicado pelas geocélulas reduziu o assentamento do trilho em todos os casos observados por Satyal et al. (2018), particularmente em subleitos fracos. O uso das geocélulas provocou uma redistribuição eficaz das tensões verticais no subleito, como pode ser visto na Figura 42, resultando em maiores áreas de subleito mobilizando a resistência ao cisalhamento e reduzindo as deformações plásticas. Além disso, os deslocamentos laterais ao longo do aterro das encostas laterais foram amplamente reduzidos pelo uso do confinamento de geocélulas.

Figura 41 – Esquema utilizado para a simulação da seção da ferrovia

Fonte: Satyal et al. (2018)

Figura 42 – Deslocamento em metros após 6 ciclos de carga: a) Seção não reforçada; b) Seção reforçada

Fonte: Adaptado de Satyal et al. (2018)

Biabani et al. (2016) realizou estudos experimentais e numéricos em camadas de sublastro para ferrovias submetidas à carregamento cíclico. No laboratório foram realizados ensaios tri-axiais prismáticos de larga escala, submetidos a uma tensão de confinamento relativamente baixa $\sigma'_3 = 10 - 30 \, kPa$ e uma frequência de 10 Hz. Para obter um resultado mais condizente com as condições de campo a tensão intermediária aplicada foi diferente da tensão principal mínima, o aparelho utilizado no ensaio está presente na Figura 43. Para a simulação numérica, a geometria do modelo seguiu as dimensões do aparelho do laboratório. Uma carga cíclica, causada por um trem é exercida sob o lastro, que foi aplicado diretamente na camada sub-lastro, onde as características de carga foram semelhantes às usadas no laboratório, o modelo numérico pode ser observado na Figura 44. Para caracterizar o comportamento do sub-lastro foi utilizado o modelo elasto-plástico de Drucker-Prager, enquanto a geocélula foi considerada como perfeitamente elástica.

Os resultados numéricos e os experimentais, obtidos por Biabani et al. (2016) mostraram concordância, ambos destacando a eficácia do efeito de confinamento acrescentado pela inclusão da geocélula. Os resultados do teste indicam que a modelagem numérica apresentada pode simular com sucesso a deformação vertical e lateral do sub-lastro reforçado com geocélula sob carga cíclica a uma pressão confinante variável ao longo do tempo. O estudo considerou que tração mobilizada foi distribuída de maneira não uniforme ao longo da geocélula, onde a tensão de tração mobilizada máxima ocorreu na direção paralela à principal intermediária durante o estágio de carregamento. O confinamento celular induzido pelo geocélula se mostrou eficiente mesmo para materiais de preenchimento de baixa qualidade e com alto ângulo de atrito. A Figura 45 mostra como os resultados experimentais e de laboratório apresentaram boa concordância e também como o reforço com geocélula reduziu a deformação vertical na amostra.

Figura 43 – Equipamento triaxial utilizado no ensaio

Fonte: Adaptado de Biabani et al. (2016)

Figura 44 – Modelagem em elementos finitos de um seção rodoviária

Figura 45 – Deformação vertical na: a) Camada de sublastro não reforçada; b) Camada de sublastro reforçada com geocélula

Fonte: Adaptado de Biabani et al. (2016)

Yang et al. (2010) desenvolveram um modelo numérico tridimensional para analisar um solo arenoso reforçado por uma única camada de geocélula. O solo de enchimento foi simulado a partir do modelo Duncan-Chang, enquanto a geocélula foi simulada utilizando elementos lineares de placa que podiam transportar tanto tensão de flexão quanto de membrana. Uma relação de tensão-deformação definida pelo critério de Mohr-Coloumb foi adotada para modelar o atrito entre a geocélula e o solo. A partir da simulação puderam ser verificados o aumento da resistência do solo reforçado; o efeito de confinamento da geocélula no solo e o atrito gerado entre as paredes da geocélula e o solo de enchimento. Foi realizado ainda uma prova de carga em laboratório com intuito de validar a simulação numérica. Os valores encontrados na simulação e no teste laboratorial foram considerados coerentes.

Venkateswarlu et al. (2018) descrevem os resultados de ensaios de campo em grande escala e estudos numéricos conduzidos em leitos de solo reforçados com geossintéticos que suportam a fundação de máquinas. Uma série de ensaios de ressonância de blocos em modo vertical é realizada sobre uma base de concreto rígida apoiada em diferentes condições de solo reforçado. Os ensaios foram realizados em uma cava com dimensões $2m \times 2m \times 0,5$ m usando uma plataforma de concreto de tamanho 0,6 m $\times 0,6$ m $\times 0,5$ m, e o equipamento completo pode ser visto na Figura 46. Quatro condições de solo, expostas na Figura 47, foram testadas: não-reforçado, reforçado com uma camada de geogrelha, reforçado com dupla camada de geogrelha e reforçado com uma camada de geocélula. Os testes são realizados sob seis diferentes níveis de força dinâmica usando um oscilador mecânico tipo Lazen. No total, foram realizados 38 ensaios e a resposta dinâmica foi avaliada em termos de redução na amplitude de ressonância, velocidade de pico de partículas (PPV) e melhora nas propriedades dinâmicas do solo. Além disso, os resultados experimentais foram validados com estudos numéricos realizados usando o *software* de elementos finitos FLAC3D.

O modelo numérico elaborado por Venkateswarlu et al. (2018) levou em conta as dimensões necessárias para que não houvesse influência causada pelas vibrações mais altas, sendo assim o modelo presente na Figura 48, foi elaborado com dimensões 15 m x 15 m x 10 m. O solo de fundação foi modelado obedecendo ao critério não-linear de Mohr-Coloumb , o bloco de concreto e a geocélula foram modelados como materiais elásticos.

Os resultados numéricos encontrados por Venkateswarlu et al. (2018) revelaram que a propagação lateral de vibrações é significativamente controlada na presença da geocélula. Resultados experimentais mostram uma redução da amplitude de deslocamento da vibração reduziu significativamente na presença de geossintéticos, sendo a maior redução observada na presença da geocélula. No solo reforçado com geocélula, a amplitude de ressonância diminui em 61% e a frequência natural do sistema de solo aumenta em 1,38 vezes em comparação com a condição não reforçada. Além disso, o reforço de geocélulas reduziu o VPP em 48% a uma distância de 0,5 m da face da base. A Figura 49 mostra a redução nos deslocamentos provocados

pelos diferentes tipos de reforços avaliados e ainda a boa aproximação observada entre os resultados numéricos e experimentais.

Figura 46 – Ensaio de vibração em bloco: a) Vista esquemática; b) Mecanismo de rotação do oscilador mecânico

Fonte: Adaptado de Venkateswarlu et al. (2018)

Figura 47 - Condições de solo ensaiadas

Fonte: Adaptado de Venkateswarlu et al. (2018)

Figura 48 – Modelo numérico em FLAC 3D para quatro condições: a) Não reforçado; b) reforço com uma camada de geogrelha; c)Reforço com duas camadas de geogrelha; d) Reforço com uma camada de geocélula

Fonte: Adaptado de Venkateswarlu et al. (2018)

Figura 49 – Comparação entre os deslocamentos encontrados experimentalmente e numericamente

Fonte: Adaptado de Venkateswarlu et al. (2018)

Ghareh (2015) traz resultados experimentais e numéricos para avaliar a influência da largura e altura da camada de geocélula na capacidade de carga e o assentamento em camadas
de solo reforçados. Tanto no modelo experimental quanto no numérico, a carga é aplicada por uma placa metálica com diâmetro 0.15 m e profundidade de 0.03 m e o tanque utilizado tem comprimento, largura e altura de 0.9 m. Para o teste em laboratório o arranjo está mostrado na Figura 50. O experimento conta com uma camada de subleito de argila compactada que recebe uma escotilha uma escotilha circular com diâmetro de 0.095m foi posicionada no eixo central do tanque a uma altura de 0.11 m para simular a provisão de canos. A geocélula é posicionada logo após a camada de argila e preenchida com areia e cascalho, e os testes são realizados variando a altura e a largura da camada de geocélula.

Fonte: Adaptado de Ghareh (2015)

Para o modelo numérico Ghareh (2015) utilizou o software Abaqus 6.11. Para representar a camada de argila o modelo escolhido foi o CAM CLAY e para representar o comportamento da camada de areia o modelo de DRUCKER PRAGER. O modelo pode ser observado na Figura 51.

Figura 51 – Modelo numérico utilizado no estudo

Em seu estudo Ghareh (2015) encontrou resultados laboratoriais e numéricos com concordância muito boa entre si. O autor mostrou a influência da largura do reforço de geocélula (b) e da altura da camada de reforço (h) no assentamento apresentado pela camada de solo. A Figura 52 ilustra bem esses resultados, sendo u a profundidade de assentamento da geocélula e D o diâmetro da placa de aplicação da carga.

Figura 52 – Variação da curva pressão-coeficiente de recalque em função: a) da largura do elemento de geocélula; b) da altura da camada de geocélula

Rahimi et al. (2018) descrevem em seu trabalho o efeito do reforço com geocélula em camada de solo submetida a forças de arrancamento em placas de ancoragem. Os testes de arrancamento foram realizados em uma cava de teste com dimensões próximas das reais com placas de ancoragem com larguras entre 150 e 300 mm com profundidades de embutimento de 1,5 a 3 vezes a largura da placa para camadas de aterro não reforçado e reforçado com geocélula.

Foi utilizada uma única camada de geocélula aberturas de 110 mm x 110 mm e altura de 100 mm, fabricada a partir de geotêxtil não perfurado e não tecido. O esquema utilizado no ensaio pode ser visto na Figura 53. Um total de 40 ensaios foram realizados, sendo 22 ensaios independentes e 28 repetições.

Além dos ensaios Rahimi et al. (2018) também traz resultados de simulação numérica, o modelo de elementos finitos foi elaborado no *software Abaqus 6.12 Explicit*. Assim como nos experimentos, apenas uma camada de geocélula de largura de abertura e altura fixas foi modelada. As simulações foram realizadas em três diferentes tamanhos de placa (B = 150, 225, 300 mm), quatro razões de profundidade de adensamento (D / B = 1,5 a 3) e uma relação entre a largura da camada de geocélula e a largura da placa (b / B = 3). O solo de enchimento foi modelado como material elasto-plástico e obedecendo ao critério de escoamento de Drucker-Prager, enquanto a geocélula foi considerada um material perfeitamente elástico. Os elementos de malha escolhidos foram elementos tetraédricos de oito nós com integração reduzida (C3D8R) para o solo, enquanto a geocélula foi modelada com elementos de membrana quadriláteros com 4 nós e integração reduzida (SR4). O modelo numérico está mostrado na Figura 54.

Figura 54 – a) Modelo geométrico e condições de contorno; b) Malha utilizada na modelagem numérica

Fonte: Adaptado de Rahimi et al. (2018)

Como resultado Rahimi et al. (2018) encontrou que a presença da camada de geocélula aumentou a capacidade de ancoragem de placa de forma significativa, fenômeno que pode ser justificado pelo fato da geocélula promover uma região mais ampla de solo de sendo mobilizado e deslocando-se verticalmente. A resistência ao arranchamento para deslocamentos maiores também aumentou diferentemente do comportamento distinto de suavização observado para condições pós-pico em sistemas não reforçados. Quanto a simulação, o modelo de elementos finitos demonstrou aproximação razoável com os resultados experimentais. As simulações representaram bem o desempenho do solo reforçado, mostrando a área de solo mobilizada, a redução das tensões de arranchamento e a tensão de cisalhamento no solo sobrecarregado reduzida pela geocélula, mas não conseguiu captar bem a característica de suavização pós-pico observada nos ensaios reforçados. Alguns resultados podem ser observados nas Figura 55 e Figura 56.

Suku et al. (2016) avaliou os efeitos do reforço com geocélula aplicada em camadas de bases granulares e os fatores que influenciam o comportamento dessa camada. Para realização do ensaio foi utilizado um tanque metálico de dimensões 0.9 m por 0.9 m e altura 0.6 m. Uma placa de metal com diâmetro 0.15 m e um atuador hidráulico com capacidade de 50 kN foram utilizados para carregar a camada de base. O carregamento foi realizado por incrementos e as deformações da superfície foram gravadas com a ajuda de dois Transformadores Diferenciáveis Variáveis Lineares (LDVT) de 50mm localizados no topo da placa de carga. O teste foi realizado em 3000 ciclos com carga variando entre 20kN, 25kN e

30kN e cada carga mantida por 1000 ciclos, a pressão correspondente é de 1100 kPA, 1375 kPa e 1650 kPa, respectivamente. Foram realizadas 5 provas de cargas cíclicas, sendo a primeira em uma camada de areia não reforçada com 300mm de espessura, e as demais em camadas reforçadas com geocélula e espessuras variáveis.

Figura 55 – Comparação das curvas carga-deslocamento experimentais e numéricas para os casos: a) Não-reforçado (B = 300 mm); b) Reforçado (B = 300 mm); c) Nãoreforçado (B = 225 mm) e d) Reforçado (B = 225 mm)

Fonte: Adaptado de Rahimi et al. (2018)

Figura 56 – Distribuição de tensões após a aplicação de 20 mm de deslocamento para B = 300 mm e D/B = 3 para os casos: a) Não reforçado e b) Reforçado

Fonte: Rahimi et al. (2018)

Além das provas de carga, Suku et al. (2016) utilizou o software Plaxis 2D para realizar a modelagem numérica das provas de cargas cíclicas. Para tanto, foi utilizado um modelo elástico linear para representar o solo do subleito, e a camada de solo reforçado com geocélula obedeceu ao modelo de endurecimento do solo. A malha do modelo numérico foi representada por elementos triangulares de tamanho médio, e a carga foi aplicada de forma parecida ao laboratório. Uma pressão de 1100 kPa foi aplicada a uma placa de carga com raio igual a 7.5 cm e com frequência de 1 Hz.

Dos experimentos e simulação numérica realizados por Suku et al. (2016) obtiveramse resultados muito próximos, como nota-se pela Figura 57. Observou-se que o reforço de geocélula nas camadas granulares livres reduz efetivamente a deformação permanente em comparação com a seção não reforçada. A Figura 58 traz a comparação entre a deformação de bases de diferentes espessuras reforçadas e a base não-reforçada. Figura 57 – Comparação entre a deformação permanente medida experimentalmente e prevista por modelagem numérica para: a) Base não-reforçada; b) Base reforçada

Fonte: Adaptado de Suku et al. (2016)

40

50

60

70

Figura 58 – Deformação total para diferentes situações de reforço

Fonte:Suku et al. (2016)

300mm Base reforçada

250mm Base reforçada 200mm Base reforçada

150mm Base reforçada 300mm Base não-reforçada

4. MODELO DE DRUCKER – PRAGER

O uso de modelos constitutivos tem por objetivo relacionar as tensões com as deformações unitárias, produzidas no interior do material em função de determinados parâmetros dependentes das propriedades mecânicas do material. Para que o modelo constitutivo seja útil é necessário que possua parâmetros identificáveis a partir de poucos e simples ensaios e deve ser capaz de reproduzir a resposta física do material frente a mudança de tensões e deformações (Collantes, 2017).

Gonzales (2014) aponta três fenômenos básicos associados ao comportamento mecânico de materiais geotécnicos: a influência do histórico de tensões, mudando o limite entre o comportamento elástico e o elasto-plástico; as deformações plásticas irrecuperáveis, ao ultrapassar o domínio elástico definido pela superfície de plastificação e o endurecimento com diminuição do volume por compressão ou amolecimento com aumento de volume por dilatância. Essas características sugerem que a teoria da plasticidade inicialmente desenvolvida para metais pode ser aplicada para a descrição do comportamento de solos e rochas.

Dentre as opções disponíveis o modelo de Drucker-Prager foi escolhido para representar o comportamento plástico do solo com base em trabalhos anteriores e também nas recomendações presentes no próprio manual do *Software* Abaqus, que recomenda o modelo de Drucker-Prager para representar materiais granulares e com atrito como solos e rochas. A seguir será apresentado como funciona o modelo de Drucker-Prager dentro do *Software* Abaqus.

Para definir o comportamento do material pelo modelo de Drucker-Prager, primeiro é necessário escolher o critério de escoamento a ser utilizado, as opções são: linear, hiperbólico ou exponencial. O modelo linear é definido em termos dos três invariantes de tensão e fornece uma superfície de escoamento não circular no plano desviatório para corresponder a diferentes valores de escoamento em compressão e tração triaxial, fluxo associado no plano desviatório e ângulos de atrito e dilatância. Enquanto os critérios hiperbólico e exponencial são definidos apenas em função dos dois primeiros invariantes de tensão. O critério hiperbólico é uma combinação entre o modelo linear sob alta tensão confinante e a condição de tração máxima de Rankine e o exponencial é o mais abrangente dos três (ABAQUS, 2014).

Para casos em que os dados experimentais são dados em termos de coesão e ângulo de atrito, o modelo linear pode ser usado. O modelo linear é destinado principalmente para aplicações em que as tensões são em grande parte compressivas. Se esses parâmetros são fornecidos para um modelo Mohr-Coulomb, é necessário convertê-los em parâmetros Drucker-Prager (ABAQUS, 2014).

O modelo de Mohr-Coulomb assume que a ruptura não depende do valor de tensão principal intermediário, enquanto o modelo de Drucker-Prager considera essa dependência. A maioria das rupturas dos materiais geotécnicos inclui uma pequena dependência da tensão principal intermediária. A diferença dos dois modelos no plano desviatório pode ser vista na Figura 59.

Figura 59 – Modelos de Mohr-Coloumb e Drucker-Prager no plano desviatório

Fonte: ABAQUS, 2014

O critério de ruptura e Drucker-Prager pode ser visto na Figura 60. Os que definem o comportamento do material são o ângulo de atrito (β) e a coesão (d), que devem ser relacionados com o ângulo de atrito (ϕ), coesão (c) e de ângulo de dilatância (ϕ) de Mohr-Coloumb. As equações 25 a 30 trazem a relação entre o atrito e a coesão nos dois modelos (ABAQUS, 2014).

Fonte: ABAQUS, 2014

$$sen\phi = \frac{tan\beta\sqrt{3(9-tan^2\psi)}}{9-tan\beta tan\psi}$$
 Eq. 25

$$ccos\phi = \frac{\sqrt{3(9 - tan^2\psi)}}{9 - tan\beta tan\psi}d$$
 Eq. 26

Considerando fluxo associativo com $\psi = \beta$, tem-se:

$$tan\beta = \frac{\sqrt{3}sen\phi}{\sqrt{1 + \frac{1}{3}sen^2\phi}}$$
 Eq. 27

$$\frac{d}{c} = \frac{\sqrt{3}cos\phi}{\sqrt{1 + \frac{1}{3}sen^2\phi}}$$
 Eq. 28

E para fluxo não dilatante, com $\psi = 0$, tem – se:

$$tan\beta = \sqrt{3}sen\phi$$
 Eq. 29

$$\frac{d}{c} = \sqrt{3}cos\phi$$
 Eq. 30

O modelo de Drucker Prager oferecido pelo Abaqus oferece também a opção "hardening" que permite adicionar ao comportamento do material os fenômenos de endurecimento ou amolecimento. Nesse caso a a evolução da superfície de escoamento com deformação plástica é descrita em termos da tensão equivalente ($\bar{\sigma}$), que pode ser escolhida como tensão de escoamento por compressão uniaxial (σ_c), tensão de escoamento por tração uniaxial (σ_t) ou tensão de escoamento por cisalhamento (coesão).

- $\bar{\sigma} = \sigma_c$ Se o endurecimento é definido pela compressão uniaxial de escoamento
- $\bar{\sigma} = \sigma_t$ Se o endurecimento é definido pela tração uniaxial de escoamento
- $\bar{\sigma} = d$ Se o endurecimento é definido pela coesão

5. METODOLOGIA EXPERIMENTAL

5.1 MATERIAIS

Nesta seção são apresentadas as principais características dos materiais utilizados na pesquisa.

5.1.1 Solo do Subleito

O solo utilizado como camada de subleito foi retirado de uma escavação de subsolo localizada na Rua Francisco Glicério – Zona 07 no município de Maringá.

O subsolo de Maringá é composto por uma camada superficial de solo evoluído (Latossolo Vermelho férrico), originariamente proveniente da alteração de basalto, constituída de argila siltosa porosa, de cor marrom avermelhado, com espessura variável, chegando em alguns locais até à profundidade máxima de 12 m. Abaixo dessa camada se encontra uma camada de argila siltosa e silte argilo-arenoso, de cor variegada com matriz na tonalidade marrom, roxo ou cinza amarelado. A rocha basáltica se encontra abaixo dessas duas camadas de solo. O nível d'água do subsolo encontra-se geralmente na camada de solo de alteração do basalto podendo estar ou não perto do topo rochoso (BELINCANTA e GUTIERREZ, 2007).

A Tabela 9 apresenta as propriedadades mecânicas so solo utilizado para representar a camada de subleito dos ensaios, e as Figura 61 e Figura 62 os resultados do ensaio de cisalhamento realizado.

Figura 61 – Gráfico da tensão cisalhante pelo deslocamento horizontal do Subleito

Fonte: Autora (2020)

Propriedade	Valor
Massa específica aparente úmida (g/cm³)	1,70
Massa específica aparente seca (g/cm ³)	1,38
Teor de Umidade médio (%)	23,10
Índice de Vazios Inicial	1,19
Massa específica dos sólidos (g/cm ³)	3,03
Tensão de pré-adensamento (mPa)	0,39
Coesão (mPa)	0,065
Ângulo de atrito (°)	26,54

Tabela 9 - Propriedades mecânicas do solo do Subleito

Fonte: Autora (2020)

Fonte: Autora (2020)

5.1.2 Areia

A areia utilizada para constituir a camada de base nos ensaios foi areia de quartzo (Figura 63) cuja caracterização foi realizada com o ensaio de granulometria segundo as orientações da ABNT NBR 7181:2016 (Figura 64) e a determinação do peso específico dos graõs cujo valor encontrado foi de $\rho_s = 2,72g/cm^3$ e o $C_u = 1,9$ e $C_c = 1,1$. As demais

propriedades da areia estão apresentadas na Tabela 10, e as Figura 65 e Figura 66 expoem o resultado do ensaio de cisalhamento.

1	
Propriedade	Valor
Massa específica aparente úmida (g/cm³)	1,53
Massa específica aparente seca (g/cm ³)	1,45
Teor de Umidade médio (%)	5,40
Coesão (mPa)	0,001
Ângulo de atrito (°)	42,54

Tahal	a 10	Dron	riadada	e macânicae	do	araia
i adei	a 10 –	- Prop	riedade	s mecanicas	s ua	areia

Fonte: Autora (2020)

Figura 63 – Grãos da areia utilizada na camada de base.

Fonte: Autora (2020)

Figura 64 – Composição granulométrica da areia utilizada na camada de base

Fonte: Autora (2020)

Figura 65 - Gráfico da tensão cisalhante pelo deslocamento horizontal da Areia

Fonte: Autora (2020)

Figura 66 - Envoltória de Mohr-Coloumb para a Areia

Fonte: Autora (2020)

5.1.3 Reforço

O reforço plástico foi o produto Estrutura Permeável para Confinamento 50 (PlastFloor 50 t), apresentado na Figura 67, cedido pela empresa PlastPrime. A peça de reforço tem dimensões 512 x 492 x 36 mm, pesa 886 g e é composta por Polipropileno e polietileno de alta densidade e conforme catálogo apresenta uma resistência de 50 t/m². A empresa recomenda esse produto para uso em estacionamento e trânsito de veículos leves (carros de passeio, motocicletas), quintais/jardins, trânsito de pedestres/animais de grande porte, telhado verde, academias ao ar livre. As Figura 68 e Figura 69 apresentam o elemento de reforço sendo instalado e com a instalação finalizada, respectivamente.

Como caracterização do elemento de reforço (geocélulas) foi realizado o ensaio de tração no elemento. O ensaio foi realizado na máquina de ensaios de tração e compressão unixial do laboratório P02. A parte superior da geocélula foi fixada na máquina enquanto uma carga foi aplicada em duas paredes da parte superior da placa, como pode ser visto na

Figura **70**. Foram utilizados dois transdutores do tipo LVDT HBM com curso máximo de 30 mm e precisão de 0,01 mm para medir a diferença de deslocamentos entre as paredes da

parte superior e da parte inferior da placa. Essa configuração foi reproduzida por simulação numérica.

Figura 67 – Elemento de reforço – PlastFloor 50t

Fonte: Plastprime (2019)

Figura 68 – Instalação do Plastfloor

Fonte: Plastprime (2019)

Figura 69 – Exemplo de aplicação do Plastfloor

Fonte: Plastprime (2019)

Fonte: Autora (2020)

5.2 ENSAIO DE PROVA DE CARGA

Para realização dos ensaios de prova de carga em escala reduzida, foi construído um tanque de ensaio metálico com dimensões 1200 x 1200 x 1200 mm. O tamanho da caixa foi definido em função do tamanho da placa de geocélulas utilizada como reforço, 500 mm, considerando que o bulbo de tensões tem inflûencia em até duas vezes o tamanho da placa onde

a carga é aplicada (BARNES, 2017), no caso da geocélula distribuída, definiu-se como tamanho mínimo tanto para as laterais quanto para a profundidade da caixa 1000 mm.

A caixa, que pode ser visuzalizada na Figura 71 é composta por 5 partes, sendo 1 o fundo da caixa e as demais as laterais. O fundo da caixa é composto por uma chapa metálica de 3 mm apoiado sobre as vigas de fundação da caixa. As laterais são compostas pela mesma chapa metálica de 3 mm, enrijecidas por perfis de cantoneira a cada 240 mm. As laterais foram parafusadas ao fundo da caixa e entre si formando a caixa utilizada no ensaio.

Figura 71 – Caixa metálica utilizada na realização das provas de carga

Fonte: Autora (2020)

A preparação da camada de subleito se deu por compactação manual do solo em seu estado natural. As camadas de solo foram compactadas a cada 200 kg de solo resultando em camadas de aproximadamente 8,5 cm. A compactação foi realizada manualmente com controle em realizado em massa de material lançado e as dimensões do volume de modo a se obter pelo o grau de compactação de 90% do proctor normal. Foram acrescentadas e compactadas 10 camadas de solo, resultando em uma camada de subleito com 85 cm.

As camadas de areia também foram compactadas manualmente, nesse caso a cada 100 kg de material, resultando em camadas de aproximadamente 5 cm de espessura. Primeiramente foi realizado esse procedimento em 3 camadas para que fossem realizados os experimentos com a base de 15 cm, em seguida foram acrescentadas mais 3 camadas de areia, resultando em uma base de 30 cm de espessura.

Na execução das provas de carga estática em placa foi utilizado um sistema adequado para a aplicação de carga de compressão axial na face superior da base, constituído de um conjunto de reação estável: um macaco com bomba hidráulica; uma célula de carga elétrica com leitora analógico-digital, devidamente aferida; relógios comparadores com resolução de centésimo de milímetro e vigas de referência.

Para a aplicação da carga durante os ensaios de prova de carga foi utilizada uma bomba hidráulica manual da marca Enerpac com capacidade máxima para 200 kN e 70 MPa, a bomba foi ligada a um macaco hidráulico posicionado sobre a placa de carga. Para possibilitar o controle da carga aplicada e as leituras, utilizou-se uma célula de carga elétrica ligada a um leitor digital coloca sobre o macaco hidráulico e abaixo da viga de reação. Para realizar as leituras de deslocamento foram conectados sobre a placa dois relógios comparadores *Digimess* 30 mm com precisão de 0,01 mm dispostos diametralmente e fixados em vigas de referência apoiadas na borda da caixa metálica. As Figura 75, 67, e 68 apresentam o projeto do sistema para as provas de carga, enquanto as Figuras 69 e 70 mostram o sistema montado.

Fonte: Autora (2020)

Figura 73 – Vista em planta do sistema utilizado para as provas de carga

Fonte: Autora (2020)

Figura 74 – Vista frontal do sistema utilizado para as provas de carga

Fonte: Autora (2020)

Figura 75 – Sistema utilizado para realização das provas de carga

Fonte: Autora (2020)

Figura 76 – Sistema utilizado nas provas de carga

Fonte: Autora (2020)

5.2.1 Método de Ensaio

As provas de carga foram realizadas seguindo as orientações da ASTM D1196 -Standard Test Method for Nonrepetitive Static Plate Load Tests of Soils and Flexible Pavement Components, for Use in Evaluation and Design of Airport and Highway Pavements. As etapas de aplicação da carga foram:

- Carga de Assentamento: é aplicada uma carga que produza um deslocamento da ordem de 0,25 mm até 0,50 mm. Após a estabilização desse deslocamento a carga é zerada, e pode-se dar início a fase de carregamento.
- 2) Carregamento: A definição da magnitude dos intervalos de carga se dá em função do que se se espera obter como carga de ruptura. A norma recomenda, no entanto, que sejam feitos pelo menos 6 intervalos de carregamento para que se possa ter uma boa curva carga-deslocamento. A cada incremento a carga deve ser mantida até que a que a velocidade de deslocamento seja menor do que 0,03mm/min por 3 minutos consecutivos. Para tanto, foram feitas leituras do deslocamento para cada incremento de carga a cada 3 minutos por 12 minutos ou até que o deslocamento se estabilizasse.
- Descarregamento: O descarregamento foi realizado em quatro etapas, respeitando os mesmos parâmetros de estabilização que o carregamento.

5.2.2 Ensaios Realizados

As provas de carga foram realizadas variando dois parâmetros principais: a altura da camada de base e a posição do reforço. A Tabela 11 apresenta as diferentes posições de aplicação do reforço e a nomenclatura utilizada para descrever cada uma, enquanto a Tabela 12 apresenta as combinações dos parâmetros para os 9 ensaios realizados e a Figura 95 traz uma representação esquemática das camadas utilizadas no ensaio. A Figura 77a mostra o ensaio sendo realizado no solo do subleito (S0) e a Figura 77b apresenta o ensaio S0-B15-GB2.

Sigla	Posição do Reforço
Α	No meio da camada de base
В	No topo da camada de base
1	Aberturas voltadas para cima
2	Aberturas voltadas para baixo

Tabela 11 – Simbologia das aplicações do reforço

Fonte: Autora (2020)

	8,	1	8
Ensaio	Altura Base	Reforço	Código
1	0	-	SO
2	15	-	S0-B15
3	15	B1	S0-B15-GB1
4	15	B2	S0-B15-GB2
5	30	-	S0-B30
6	30	Al	S0-B30-GA1
7	30	A2	S0-B30-GA2
8	30	B1	S0-B30-GB1
9	30	B2	S0-B30-GB2

Tabela 12 – Configuração dos ensaios de prova de carga realizados

Fonte: Autora (2020)

Figura 77 – Realização das provas de carga: a) S0 e b) S0-B15-GB2

Fonte: Autora (2020)

Figura 78 – Representação esquemática dos ensaios de prova de carga realizados

Fonte: Autora (2020)

5.2.3 Cálculo Módulo de Elasticidade

A partir das curvas carga x deslocamento obtidas como resultado da realização dos ensaios de prova de carga em placa foram calculados os módulos de elasticidade das camadas de subleito e da areia através das equações de recalque e do módulo de elasticidade equivalente, Eq. 31 e Eq. 32 respectivamente.

$$w = \frac{\sigma_{at} D(1-\nu)^2}{E_s} I_w$$
 Eq. 31

Em que:

w é o recalque medido;

 σ_{at} é a tensão atuante no ponto em questão;

D é diâmetro da placa de aplicação da carga;

 ν é o coeficiente de poison do solo;

 E_s é o módulo de elasticidade do solo;

 I_w é o fator de forma.

$$E_s = \frac{E_1 H_1 + E_2 H_2}{E_1 + E_2}$$
 Eq. 32

Em que:

 E_s é o módulo de elasticidade do sistema;

 E_1 é o módulo de elasticidade da camada 1;

 H_1 é a altura de solo da camada 1;

 E_2 é o módulo de elasticidade da camada 2;

 H_2 é a altura de solo da camada 2;

6. METODOLOGIA NUMÉRICA

Nesta seção é apresentada os detalhes para montagem do modelo numérico utilizado para representar os ensaios realizados.

6.1 SIMULAÇÃO DO ENSAIO DE TRAÇÃO NA GEOCÉLULA

O ensaio de tração foi realizado com objetivo de caracterizar fisicamente a geocélula utilizada, sendo reproduzido numericamente para permitir a obtenção dos parâmetros físicos do modelo elasto-plástico que melhor representam a geocélula nas simulações das provas de carga.

6.1.1 Geometria do modelo

Para a montagem do modelo numérico, a geocélula foi dividida em duas partes e posteriormente fundidas como uma parte única e considerada como elemento de membrana do tipo 3D deformável planar, enquanto os hexágonos foram montados como elementos de membrana formados por extrusão. Para que a parte numérica ficasse exatamente como a peça de reforço utilizada nos ensaios, foram feitos cortes em ambas as partes. Para juntar as duas partes, criou-se uma montagem no software onde elas foram corretamente posicionadas e exportadas como uma parte só. Essa parte foi posteriormente adicionada ao modelo principal. A Figura 79 apresenta as partes do reforço isoladas e o reforço completo e a Tabela 13 traz um resumo com as características geométricas representadas na simulação.

Figura 79 – Representação numérica do reforço: a) Base; b) Hexágonos e c) Reforço completo

Fonte: Autora (2020)

Tabela 13 – Características Geométricas do Reforço			
Part	Shape	Tipe (Shape)	Tamanho
Geocécula	Sl. all	D1	Placa com 495x515x2 mm, com
(base)	Snell	Planar	vazados de raio 22 e 7,5 mm
C 21			Hexágonos circunscritos em
Geocélula	Shell	Extrusion	circunferência com raio 33 mm x 35
(hexagonos)			mm (altura)

Fonte: Autora (2020)

6.1.2 Materiais e seções

Após algumas simulações com o objetivo de calibrar o modelo, foram definidos os parâmetros utilizados na simulação numéricaem função do ajuste da curva carga-deslocamento obtida no ensaio de tração realizado na geocélula, esses parâmetros estão expostos na Tabela 14. A seção escolhida para atribuir esses parâmetros a geometria foi a Membrana Homogêna.

Parâmetros	Densidade (γ) - ton/mm ³	0,9E ⁻⁹	
gerais			
Parâmetros	Módulo de Elasticidade (E) - MPa	1000	
Elásticos	Coeficiente de poison (ν)	0.2	
Parâmetros	Tensão de Escoamento - MPa	20	
Plásticos	Deformação Plástica	0	
	Fonte: Autora (2020)		

Tabela 14 – Parâmetros escolhidos para representar a Geocélula

6.1.3 Configuração da Análise

No passo inicial da simulação é necessário aplicar as condições de contorno ao sistema. Os movimentos foram restringidos em todas as direções nas faces inferiores da peça e nas direções X e Z nas faces superiores, como mostra a Figura 80 a. A carga foi aplicada como pressão nas mesmas faces onde foi aplicada a carga no ensaio (Figura 80 - b).

Fonte: Autora (2020)

6.1.4 Malha

Para discretizar a parte numérica foi escolhido o elemento SR4 (Casca fina ou grossa duplamente curvada de 4 nós, integração reduzida e deformações finitas de membrana) com tamanho 5 mm, a malha pode ser visualizada na Figura 81.

Figura 81 – Discretização da malha na geocélula

Fonte: Autora (2020)

6.2 SIMULAÇÃO DAS PROVAS DE CARGA

A geometria do modelo numérico reproduziu as dimensões usadas em laboratório. O tanque utilizado para os ensaios tem 1200 mm x 120 mm x 120 mm, que teve seu interior preenchido pela camada de subleito, e diferentes camadas de base com e sem reforço. No entanto, com o intuito de facilitar o processamento do modelo, optou-se por representar

numericamente ¹/₄ do modelo real, como mostra a Figura 82. Condições de contorno foram utilizadas para possibilitar a simetria. A validação da eficácia do uso da simetria no modelo foi verificada através da comparação entre o resultado de simulações representando o tanque completo e representando o tanque com a dupla simetria aplicada, o resultado da comparação está presente na seção resultados. Um tutorial da montagem do modelo numérico de uma prova de carga genérica pode ser acompanhado no Apêndice A.

Para efeito de comparação e validação da simetria, foram simulados dois modelos (simétrico e completo) considerando apenas a placa de carga e a camada de subleito. Nesse modelo ambas as partes foram consideradas como elásticas lineares e os parâmetros adotados podem ser visualizados na Tabela 15. Um deslocamento de 5 mm foi aplicado na placa de carga e a tensão resultante na placa foi extraída como resultado. A Figura 83 apresenta a comparação entre o resultado da simulação com o modelo representando o tanque de ensaio completo e um quarto do mesmo.

	γ (ton/mm ³)	1,63 E ⁻⁹
Camada de subleito (Solo)	E (MPa)	40
-	ν	0,3
	γ (ton/mm ³)	7,85E ⁻⁹
Placa de carga (Aço)	E (MPa)	200.000
-	ν	0,3

Tabela 15 – Parâmetros utilizados na validação da simetria

Fonte: Autora (2020)

Figura 82 – Modelo utilizado na simulação: a) modelo completo e b) ¼ do tanque

Fonte: Autora (2020)

Figura 83 – Comparação entre o modelo completo e a aplicação de simetria

Fonte: Autora (2020)

6.2.1 Partes utilizadas

Após comprovada a a validação da utilização da simetria no modelo, foram criadas partes no modelo numérico para representar os componentes do ensaio de prova de carga. As paredes da caixa metálica não foram modeladas e sim representadas por condições de contorno que serão explicadas posteriormente. A Figura 84 mostra todas as partes criadas e a Tabela 16 apresenta um resumo das propriedades aplicadas em cada uma. Para realizar as simulações as partes foram combinadas para criar o ensaio que cada uma tinha o objetivo de combinar.

Part	Shape	Tipe (Shape)	Tamanho
Subleito	Solid	Extrusion	600x600x850 mm
Base 15	Solid	Extrusion	600x600x150 mm
Base 30	Solid	Extrusion	600x600x300 mm
Placa de	Solid	Fritrusion	172 (raio do cilindro, representado ¼)
carga	50110	Extrusion	x 20 (altura) mm
Gaacácula	Shell	Dlanar/Extrusion	¹ / ₄ do Reforço utilizado no ensaio de
Gloteluia	Snell	1 iunui/Extrusion	tração

Tabela 16 – Resumo de propriedades das partes do modelo

Fonte: Autora (2020)

Figura 84 – Representação numérica Partes que representam o solo no modelo numérico: a) Subleito; b) Base 30; c) Base 15; d) Geocélula e e) Placa-de-carga

Fonte: Autora (2020)

6.2.2 Montagem do modelo

Para montar o modelo é necessário acrescentar todas as partes utilizadas na simulação e posicioná-las corretamente em relação umas às outras em um sistema global de coordenadas, de forma que representem a geometria do modelo a ser reproduzido. Os modelos mostrados na Figura 85 representam os nove ensaios de prova de carga descritos no capitulo de metodologia experimental.

Fonte: Autora (2020)

6.2.3 Materiais e seções

Após criar as geometrias que serão utilizadas no modelo numérico foram definidas as propriedades dos materiais que serão aplicados em cada parte. Para representar as camadas de solo, tanto do subleito como da base foi escolhido um modelo elastoplásticos, baseado no modelo de Drucker Prager com o acréscimo de um "cap" que acrescenta um comportamente de enrijecimento ou endurecimento à superfície de escoamento o *Cap Hardening*.

Os parâmetros utilizados (Tabela 17) para caracterizar as camadas de solo na simulação foram calculados a partir dos ensaios de cisalhamento e adensamento realizados e apresentados na seção de metodologia experimental e transformados para o modelo de Drucker Prager com as equações apresentadas na seção 4. As curvas de *cap Hardening* foram obtidas a partir do ensaio de adensamento no caso do solo do Subleito e para areia utilizou-se de valores de referência indicados pelo manual do próprio *Abaqus*.

Material		Subleito	Base 15	Base 30
Parâmetros gerais	Densidade (γ) ton/mm ³	1,63 E ⁻⁹	1,53E ⁻⁹	7,85E ⁻⁹
Parâmetros Elásticos	Módulo de Elasticidade (E) mPa	49,53	84,1	200.000
	Coeficiente de poison (v)	0,3	0,3	0,3
Parâmetros Plásticos – <i>Cap</i> Plasticity	Material Cohesion (d) mPa	0,101	0,010	0,018
	Ângulo de Atrito (β) °	37,73	49,5	49,5
	Cap Eccentricity (R)	3,5	0,1	0,1
	Initial Yield Surface Position mPa	0,05	0,00041	0,00041
	Transition Surface Rad (α)	0,01	0,05	0,05
	FlowStress Ratio (K)	1	1	1

Tabela 17 – Parâmetros Utilizados para caracterizar as camadas de solo

Fonte: Autora (2020)

A placa de carga foi representada como material puramente elástico, e a geocélula com modelo de plasticidade convencional, os parâmetros podem ser observados na Tabela 18. Para aplicar esses parâmetros às partes criadas anteriormente o software faz uso das *sections* que tem por objetivo aplicar essas características às geometrias do modelo. Para o solo do subleito e a areia *Solid, Homogeneous*, já para o elemento de reforço a seção escolhida foi a de membrana, que serve para representar elementos com espessura fina, como as paredes da geocélula.

Material		Placa de carga	Reforço Geocélula
Parâmetros gerais	Densidade (γ) ton/mm ³	7,85E ⁻⁹	0,9E ⁻⁹
Parâmetros Elásticos	Módulo de Elasticidade (E) mPa	200.000	1.000
	Coeficiente de poison (v)	0,3	0,2
Parâmetros Plásticos	Tensão de Escoamento	-	20
	Fonte: Autora (2020)		

Tabela 18 – Parâmetros utilizados na simulação da placa de carga e geocélula

6.2.4 Configurando a análise

Com a geometria do modelo montada e todos os materiais definidos e devidamente caracterizados, deve-se iniciar a montagem da análise numérica como um todo. Nessa etapa serão definidos os passos de carregamento da análise, as condições de contorno, as interações entre as partes numéricas e a malha utilizada na simulação.

6.2.4.1 Passos da análise

Em um modelo numérico, deve-se definir a sequência das etapas de análise. Essa sequência permite aplicar alterações nas condições de contorno, carregamento, interações entre as partes do modelo e até mesmo adição ou remoção de outras partes do modelo durante a análise. Essas etapas são definadas no software como *Steps*. Na presente modelagem utilizaremos 2 *steps*.

Na etapa inicial serão aplicadas todas as características da simulação: condições de contorno, interações entre as partes, tensões geostáticas no maciço de solo e a malha do modelo. Na definição dos *Steps* é preciso definir as características dos incrementos que serão utilizados no processamento da simulação, mostradas na Tabela 19.Além do *step initial* será criado mais um step onde será aplicado um deslocamento de 35 mm na placa de carga e analisada a carga necessária para provocar o mesmo.

	-
Step	Static, General
Não linearidade geométrica	Ligado
Número máximo de incrementos	1.000.000
Automatic Stabilization	Specify damping fator 5 E ⁻⁶
Tamanho inicial do incremento	.01
Tamanho mínimo do incremento	1 E ⁻⁹
Tamanho máximo do incremento	.05
Fonte: Auto	ra (2020)

Tabela 19 - Características dos steps criados no modelo

6.2.4.2 Condições de contorno

As condições de contorno no método dos elementos finitos têm como função delimitar os problemas tornando possível sua resolução. No modelo apresentado as condições de contorno servem para representar as paredes metálicas da caixa de ensaio e também para definir a simetria que está sendo utilizada. Para tanto, restringiu-se a translação nas faces externas do modelo de acordo com suas respectivas direções, como mostra a Figura 86.

Figura 86 – Restrições aplicadas: a) na direção X; b) na direção Y e c) na direção Z

Fonte: Autora (2020)

6.2.4.3 Interações entre as partes

Para um bom funcionamento do modelo numérico, é preciso caracterizar devidamente as intereções que acontecem entre as partes da simulação. Nesta simulação é preciso representar três casos especiais: a interação entre a placa de carga e o maciço de solo, a interação entre a camada de areia e o subsolo e a interação do reforço de geocélula com o maciço de solos.

O Softare Abaqus não reconhece contato mecânico entre duas partes de um modelo, a menos que esse contato seja especificado como uma interação. Portanto com o objetivo de

transferir a carga aplicada na placa de carga para o maciço de solos, é necessário aplicar uma interação entre essas duas partes. Essa interação foi criada com um contato do tipo *surface-surface* e considerado livre de atrito, enquanto para o contato entre areia e subsolo foi considerado um coeficiente de atrito de 0,5. A Figura 87 mostra a aplicação dessa interação. Para represemtar a interação da geocélula imersa no solo, foi utilizado o recurso numérico *Embeded Region*.

Figura 87 – Interação aplicada entre a placa de carga e o maciço de solos

Fonte: Autora (2020)

6.2.4.4 Malha

A malha é o que define no método dos elementos finitos o tamanho e o formato dos elementos que serão utilizados na resolução do problema. O software Abaqus disponibiliza diversos elementos para serem utilizados na discretização da malha das partes do modelo. Esses elementos têm seu comportamento caracterizado por:

- Família: definida pela geometria que o elemento assume.
- Graus de liberdade: são as variáveis fundamentais calculadas durante a análise;
- Número de nós e ordem de interpolação: representam os pontos onde são calculados os deslocamentos ou graus de liberdade de cada elemento;
- Formulação: se refere a teoria matemática utilizada para definir o comportamento do elemento;
- Integração: é a técnica numérica que o programa utiliza para integrar várias quantidades em cada elemento.
6.2.5 Estudo da malha

Para definir o tamanho dos elementos utilizados na discretização da malha das camadas de solo, foram realizados alguns testes variando o tamanho da malha e avaliando o tempo de processamento e o resultado, a Tabela 20 apresenta a comparação em tempo de processamento. O resultado da comparação pode ser visto na Figura 88. O estudo foi realizado para a simulação do ensaio S0 por ser o mais simples, a tabela 21 mostra os tamanhos de elementos escolhidos para todas as partes utilizadas na simulação.

maina			
Tamanho do Elemento (mm)	N° de elementos	Tempo aprox. de processamento (min)	
50	2448	2	
40	4725	4	
30	11200	14	
20	38700	109	
	Fonte: Autora (2020)	· · · · · · · · · · · · · · · · · · ·	

Tabela 20 – Comparação entre tempo de processamento e tamanho dos elementos de melho

-50	0	50	100	150	200	250	300	350	400	
-0,50	,		Sec.							
-1,00)	and the								
-1,50	,			A COL						3
-2,00)								_	
-2,50)							N	_	

Figura 88 – Resultados obtidos através para diferentes tamanhos de elementos

Fonte: Autora (2020)

Para se obter bons resultados, e tornar o processamento numérico mais leve, utilizouse uma malha refinada na região de aplicação da carga, e ao se afastar da placa elementos .maiores, como é possível observar na Figura 89.

Figura 89 – Malha utilizada para representar a camada de areia e subleito

Tabela 21 – Elementos e tamanho da malha adotados na pesquisa

Parte	Solo	Placa de Carga	Reforço	
Elemento	C3D8R	C3D8R	SR4	
Tamanho (mm)	Variável	15	5	

7. RESULTADOS EXPERIMENTAIS

Como resultado das provas de carga realizadas são extraídas as curvas tensão x deslocamento para cada um dos modelos ensaiados. As Figura 90 e Figura 91 apresentam essas curvas e a Tabela 22 apresenta os resultados do módulo de reação vertical (kv) e da capacidade de carga obtida.

Como será discutido mais adiante no capitulo de discussões é claramente visível que o aumento da espessura da camada de base e a aplicação da geocélula como reforço aumentam a capacidade de carga do sistema.

	Ensaio	Kv (MPa/m)	Capacidade de carga (kPa)
1	S 0	186.88	769.23
2	S0-B15	200.56	555.56
3	S0-B15-GB1	214.13	1000
4	S0-B15-GB2	174.12	1111
5	S0-B30	289.77	769.23
6	S0-B30-GA1	310.17	833.33
7	S0-B30-GA2	356.97	714.25
8	S0-B30-GB1	415.54	1052.63
9	S0-B30-GB2	378.35	1111.11

Tabela 22 – Rigidez e capacidade de carga obtidas experimentalmente

Figura 91 - Curvas Tensão(kPa) x s/D (%) das provas de carga realizadas

Após realizar as provas de carga nas quais os sistemas foram submetidos a um carregamento mais alto, 950 kPa, foram observadas fissuras no topo da camada de base (Figura 92). Isso ocorreu principalmente nos ensaios realizados na base de 300 mm não reforçada ou com o reforço aplicado no meio da camada (S0-B30, S0-B30-GA1 e S0-B30-GA2).

Figura 92 – Fissuras encontradas no topo da base após o carregamento: a)S0-B30; b) S0-B30-GA1; c) S0-B30-GA2

Fonte: Autora (2020)

Nos ensaios realizados com a base de 300 mm e a geocélula aplicada no topo da camada (S0-B30-GB1 e S0-B30-GB2) é possível observar que não se formaram fissuras ao redor da placa de carga, mas sim em volta do reforço de geocélula. Na Figura 93 é possível observar um descolamento entre o solo e o reforço.

Figura 93 - Fissuras encontradas no topo da base após o carregamento: a)S0-B30-GB1; b) S0-B30-GB2

Fonte: Autora (2020)

8. RESULTADOS NUMÉRICOS

8.1 ENSAIO DE TRAÇÃO NO REFORÇO

A Figura 94 apresenta a distribuição de pressão no reforço após ser aplicada a carga representando o ensaio de tração realizado em laboratório. Observa-se que as paredes do reforço onde a carga foi aplicada concentraram a maior parte da tensão e apresentaram uma deformação consideravelmente maior do que as demais paredes da placa.

A comparação entre o resultado experimental do ensaio e a simulação numérica é apresentada na Figura 95, onde pode-se notar uma boa conformidade de resultados. A simulação numérica foi conduzida até a carga de 2,1 kN correspondente a carga de ruptura obtida no ensaio.

Figura 94 – Resultado da simulação do ensaio de tração no reforço

Figura 95 – Comparação entre a curva experimental e numérica do ensaio de tração

Fonte: Autora (2020)

8.2 PROVAS DE CARGA

Com a simetria aplicada no modelo devidamente validada e com o tamanho de malha definido a partir do estudo dos elementos, foram realizadas as simulações das 9 provas de carga experimentais realizadas no estudo experimental. A Figura 96 apresenta as curvas tensão x deslocamento das nove provas de carga simuladas e a Tabela 23 os resultados do módulo de reação vertical (kv) e da capacidade de carga.

Figura 96 - Curvas Tensão(kPa) x Deslocamento (mm) das simulações realizadas

Fonte: Autora (2020)

Tabela 23 – Rigidez e capacidade de carga obtidas numericamente

	Ensaio	Kv (MPa/m)	Capacidade de carga (kPa)
1	S0	246.27	663.10
2	S0-B15	157.33	586.01
3	S0-B15-GB1	199.10	912.80
4	S0-B15-GB2	189.90	905.60
5	S0-B30	169.00	745.54
6	S0-B30-GA1	155.23	893.27
7	S0-B30-GA2	170.14	969.17
8	S0-B30-GB1	197.46	999.55
9	S0-B30-GB2	207.64	1030.00

8.2.1 Ensaio S0

A Figura 97 a apresenta a distribuição de tensões verticais após a aplicação do carregamento na simulação S0, o bulbo de tensões que se desenvolve abaixo da placa de carga é perfeitamente visualizado. A tensão máxima é encontrada na extremidade da placa de carga com valor 853 kPa.

As deformações plásticas observadas na camada de subsolo podem ser observadas na Figura 98, sendo a deformação plástica vertical máxima se encontra na área da placa de carregamento e é aproximadamente 53%. Nota-se na Figura 98-b a região sob a placa que corresponde a região de plastificação com deformação plástica equivalente de 100%, onde estão caracterizados os pontos em que o material entrou em regime de escoamento para tensão correspondente de 853 kPa.

8.2.2 Ensaio S0-B15

A distribuição das tensões verticas nas camadas de base e do subleito podem ser analisadas nas Figura 99 e Figura 100. Sendo o maior valor de tensão vertical encontrado na camada de base de aproximadamente 625 kPa, enquando na camada de subleito a tensão máxima é de aproximadamente 490 kPa. Figura 98 - Distribuição das deformações plásticas na camada do Subleito – S0: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes

Fonte: Autora (2020)

Figura 99 - Distribuição de tensões verticais na base - S0-B15

Fonte: Autora (2020)

A distribuição das deformações plásticas vertical e equivalente da camada de base é exposta na Figura 101 e tem valores máximos da ordem de 45% e 40% respectivamente. Na camada de subleito a máxima deformação plástica verfical encontrada foi de 12% enquanto a máxima equivalente foi da ordem de 76%, como observado na Figura 102.

Figura 101 – Distribuição das deformações plásticas na camada de base – S0-B15: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes

Figura 102 - Distribuição das deformações plásticas no subleito – S0-B15: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes

Fonte: Autora (2020)

8.2.3 Ensaio S0-B15-GB1

A distribuição de tensões verticais no modelo ao acrescentar o reforço na posição B1 na camada de 150 mm pode ser visualizada na Figura 103.

Fonte: Autora (2020)

Ao analisar a distribuição das tensões verticais após o carregamento na camada de base (Figura 104) encontra-se como tensão máxima encontrada foi de aproximadamente 1032 kPa, enquanto na camada de subleito (Figura 105) a tensão é da ordem de 606 kPa.

Figura 105 - Distribuição de tensões verticais no subleito - S0-B15-GB1

A Figura 106 apresenta as deformações plásticas na camada de base, que apresenta deformação plástica equivalente máxima de 65% enquanto a figura Figura 107 mostra as variáveis na camada de subleito e a máxima equivalente é de 87%.

Figura 107 - Distribuição das deformações plásticas no subleito – S0-B15-GB1: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes

Fonte: Autora (2020)

Após o carregamento a geocélula apresentou um leve levantamento das suas bordas que não estavam conectadas a placa de carregamento como mostrado na Figura 108. A tensão absorvida pela geocélula durante o ensaio é ilustrada na Figura 109, e os pontos de plastificação podem ser observados na Figura 110.

Figura 109 – Tensão absorvida pela geocélula após o carregamento – S0-B15-GB1

Fonte: Autora (2020)

8.2.4 Ensaio S0-B15-GB2

A prova de carga S0-B15-GB2 que tem seus resultados apresentados a seguir, tem a mesma configuração de solo apresentada no item anterior porém com a geocélula aplicada na posição B2, a Figura 111 apresenta a distribuição de tensões obtida como resultado.

Figura 111 - Distribuição das tensões verticais no modelo completo - S0-B15-GB1

Na camada de base a tensão vertical máxima encontrada foi na ordem de 1005 kPa após o carregamento, como pode ser observado na Figura 112, enquanto o subleito apresentou 630 kPa após a aplicação da carga, essa configuração está na Figura 113

Figura 113 - Distribuição de tensões verticais no subleito - S0-B15-GB2

Como pode ser observa nas Figura 114 e Figura 115 a seguir a deformação equivalente máxima encontrada, foi da ordem de 65 % para a camada de base e 87% no subleito, enquanto a vertical foi de 30% e 20 % respectivamente.

Figura 114 - Distribuição das deformações plásticas na camada de base – S0-B15-GB2: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes

Fonte: Autora (2020)

Figura 115 - Distribuição das deformações plásticas no subleito – S0-B15-GB2: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes

Fonte: Autora (2020)

Após o carregamento é possível observar que a geocélula apresentou o levantamento ou afundamento das bordas posicionadas fora da placa de carga como mostra a Figura 116, a tensão absorvida pelo elemento de reforço pode ser analisada a partir da Figura 118. Assim como no caso anterior, a geocélula nessa configuração apresenta alguns pontos de plastificação que podem ser observados na Figura 118.

Figura 117 - Pressão absorvida pela geocélula após o carregamento – S0-B15-GB2

Figura 118 – Pontos de deformação plástica na geocélula – S0-B15-GB2

8.2.5 Ensaio S0-B30

Ao analisar a distribuição das tensões verticais após o carregamento na camada de base apresentada na Figura 119 encontra-se como tensão máxima encontrada foi de aproximadamente 1023 kPa, enquanto na camada de subleito (Figura 120) a tensão é da ordem de 425 kPa.

A máxima deformação plástica equivalente encontrada para a camada de base foi 65% e para o subleito 68%, enquanto as deformações plásticas verticais foram 45% e 5% respectivamente, conforme pode ser confirmado pelas Figura 121 e Figura 122.

Figura 119 - Distribuição de tensões verticais na base - S0-B30

Figura 120 - Distribuição de tensões verticais no subleito - S0-B30

Fonte: Autora (2020)

Figura 121 - Distribuição das deformações plásticas na camada de base – S0-B30: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes

Figura 122 - Distribuição das deformações plásticas no subleito – S0-B30: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes

Fonte: Autora (2020)

8.2.6 Ensaio S0-B30-GA1

A aplicação da geocélula na posição A1 na camada de base resultou na distribuição de tensões verticais exposta na Figura 123.

Fonte: Autora (2020)

O bulbo de tensões encontrado, mostra uma tensão vertical máxima na ordem de 1046kPa na camada de base (Figura 124) e 480 kPa na camada de Subleito (Figura 125). Enquanto as deformações plásticas, quando analisadas apresentam valores máximos equivalentes de 65% na camada de base e aproximadamente 70% no subleito, isso pode ser observado nas Figura 126 e Figura 127.

Figura 124 - Distribuição de tensões verticais na base - S0-B30-GA1

Figura 125 - Distribuição de tensões verticais no subleito - S0-B30-GA1

Figura 126 - Distribuição das deformações plásticas na camada de base – S0-B30-GA1: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes

Fonte: Autora (2020)

Mesmo aplicada longe da placa de carga, ainda é possível notar uma pequena deformação na camada de geocélula após a aplicação da carga, como nota-se pela Figura 128,

a tensão absorvida pela geocélula é apresentada na Figura 129. A Figura 130 apresenta os poucos pontos de plastificação apresentados ao fim do carregamento.

Figura 128 - Deformação na geocélula após o carregamento – S0-B30-GA1

Fonte: Autora (2020)

Figura 130 – Deformação plástica equivalente na geocélula – S0-B30-GA1

Fonte: Autora (2020)

8.2.7 Ensaio S0-B30-GA2

A prova de carga S0-B30-GA2 cujos resultados são apresntados nesse tópico tem a mesma configuração de solo apresentada no item anterior porém com a geocélula aplicada na posição A2, aFigura 131 apresenta a distribuição de tensões obtida como resultado.

O bulbo de tensões apresentado nas Figura 132 e Figura 133, mostra uma tensão vertical máxima na ordem de 1046 kPa na camada de base de 485 kPa na camada de Subleito (Figura 125). Enquanto as deformações plásticas, quando analisadas apresentam valores máximos equivalentes de aproximadamente 65% na camada de base e 71% no subleito, isso pode ser observado nas Figura 134 e Figura 135. Os valores tanto de tensão quanto de deformação plástica encontrados, se assemelham muito com com os encontrados na simuçação anterior, com a geocélula na mesma posição, porém com os aovéolos virados para cima.

Figura 132 - Distribuição de tensões verticais na base – S0-B30-GA2

Fonte: Autora (2020)

Figura 133 - Distribuição de tensões verticais no subleito - S0-B30-GA2

Figura 134 - Distribuição das deformações plásticas na camada de base – S0-B30-GA2: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes

Fonte: Autora (2020)

Figura 135 - Distribuição das deformações plásticas no subleito – S0-B30-GA2: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes

Fonte: Autora (2020)

Após o carregamento é possível observar que a geocélula apresentou um leve levantamento das bordas posicionadas fora da placa de carga como observado na Figura 136, a tensão absorvida pelo elemento de reforço pode ser analisada a partir da Figura 137. Diferentemente do caso anterior, a geocélula apresenta mais pontos de plastificação que podem ser observados na Figura 138.

Figura 136 - Deformação na geocélula após o carregamento – S0-B30-GA2

Fonte: Autora (2020)

Figura 138 - Pontos de deformação plástica na geocélula - S0-B30-GA2

Fonte: Autora (2020)

8.2.8 Ensaio S0-B30-GB1

Ao aplicar a geocélula na posição 1 no topo da camada de base é obtido como resultado a distribuição de tensões verticais apresentada na Figura 139.

Fonte: Autora (2020)

Após o carregamento as tensões verticais máximas encontradas foram: na camada de base: aproximadamente 1025 kPa; no subleito: 488 kPa. Essa distribuição é mostrada nas Figura 140 e Figura 141.

Figura 140 - Distribuição de tensões verticais na base - S0-B30-GB1

Figura 141 - Distribuição de tensões verticais no subleito - S0-B30-GB1

As deformações plásticas máximas encontradas na camada de base foram da ordem de 26% para a vertical e 65% para a equivalente, enquanto na camada do subleito esse valor foi da ordem de 11% e 74% respectivamente, como é ilustrado nas figuras Figura 142 e Figura 143.

Figura 142 - Distribuição das deformações plásticas na camada de base – S0-B30-GB1: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes

Fonte: Autora (2020)

Figura 143 - Distribuição das deformações plásticas no subleito – S0-B30-GB1: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes

Fonte: Autora (2020)

A deformação imposta a geocélula após o carregamento é possível pode ser observada na Figura 144, a tensão absorvida pelo elemento de reforço pode ser analisada a partir da Figura 145. A geocélula nessa configuração apresenta alguns pontos de plastificação que podem ser observados na Figura 146.

Figura 144 - Deformação na geocélula após o carregamento – S0-B30-GB1

Fonte: Autora (2020)

Figura 145 - Pressão absorvida pela geocélula após o carregamento - S0-B30-GB1

Fonte: Autora (2020)

Figura 146 - Pontos de deformação plástica na geocélula - S0-B30-GB1

Fonte: Autora (2020)

8.2.9 Ensaio S0-B30-GB2

O último ensaio simulado, apresenta a configuração de tensões mostrada na Figura 147. Após o carregamento as tensões verticais máximas encontradas foram da ordem de 1020kPa na camada de base e 480 kPa no subleito. Essa distribuição é mostrada nas Figura 148 e Figura 149. Analisando as deformações plásticas, observadas nas Figura 150 e Figura 151 encontra-se como mázimo valor da deformação equivalente, aproximadamente 65% na camada de base e 73% no subleito. Esses valores são muito próximos dos encontrados na simulação com a geocélula na posição B2.

Fonte: Autora (2020)

Figura 148 - Distribuição de tensões verticais na base – S0-B30-GB2

Figura 149 - Distribuição de tensões verticais no subleito - S0-B30-GB2

Fonte: Autora (2020)

Figura 150 - Distribuição das deformações plásticas na camada de base - S0-B30-GB2

Fonte: Autora (2020)

Figura 151 - Distribuição das deformações plásticas no subleito – S0-B30-GB2: a) Deformações plásticas verticais; b) Deformações plásticas equivalentes

Fonte: Autora (2020)

Após o carregamento é possível observar que a geocélula apresentou o levantamento das bordas posicionadas fora da placa de carga como observado na Figura 152, a tensão absorvida pelo elemento de reforço pode ser analisada a partir da Figura 153. Foram identificados alguns pontos de plastificação, apresentados na Figura 154.

Figura 152 - Deformação na geocélula após o carregamento - S0-B30-GB2

Fonte: Autora (2020)

Figura 154 - Pontos de deformação plástica na geocélula - S0-B30-GB2

Fonte: Autora (2020)

9. COMPARAÇÕES E ANÁLISES

A seguir serão apresentadas as comparações entre os resultados obtidos experimental e numericamente com o objetivo de avaliar a adequabilidade do modelo numérico proposto para simular o comportamento de bases reforçadas com geocélula.

A Figura 155 apresenta a comparação de resultados para a prova de carga realizada apenas no subleito (S0) é possível notar que durante o carregamento a conformidade das curvas apresentadas é muito boa.

Fonte: Autora (2020)

Ao realizar a simulação da prova de carga com a camada de base com 150 mm de espessura, foi identificada uma deficiência do modelo, ao simular solos não coesivos. Para conferir estabilidade numérica e rodar 100% da simulação é preciso aplicar uma parcela mínima de coesão ao modelo, o resultado da simulação se mostrou muito próximo ao encontrado na prova de carga experimental como pode ser visto na Figura 156. Essa boa conformidade de resultados se estendeu aos casos com base de 150 mm reforçados, mostrados nas Figura 157 e Figura 158.

Figura 156 - Comparação entre o resultado experimental e numérico do ensaio 2-S0-B15

Figura 157 - Comparação entre o resultado experimental e numérico do ensaio 3-S0-B15-GB1

Fonte: Autora (2020)

Figura 158 - Comparação entre o resultado experimental e numérico do ensaio 4-S0-

Para as simulações com base de 300 mm foi possível encontrar uma conformidade de resultados satisfatória. Analisando a Figura 159 nota-se que nos primeiros trechos a curva numérica apresenta descolamentos maiores do que a experimental, mas ao se aproximar da ruptura os resultados mostram maior conformidade.

Fonte: Autora (2020)
A comparação dos resultados obtidos com a base de 300 mm reforçada nas posições A1 e A2 são apresentados nas Figura 160 e Figura 161, apresentando uma discrepância entre resultados, o modelo numérico se apresenta muito mais rigído do que o experimental.

Figura 160 - Comparação entre o resultado experimental e numérico do ensaio 6-80-B30-GA1

Fonte: Autora (2020)

Figura 161 – Comparação entre o resultado experimental e numérico do ensaio 7-80-

B30-GA2

Fonte: Autora (2020)

As simulações com a base de 30 e a geocélula posicionada no topo da camada apresentaram boa conformidade com os experimentos, como pode ser visto nas Figura 162 e Figura 163.

Figura 162 - Comparação entre o resultado experimental e numérico do ensaio 6-S0-

Fonte: Autora (2020)

Figura 163 - Comparação entre o resultado experimental e numérico do ensaio 6-80-

Fonte: Autora (2020)

Nas Tabela 24 e Tabela 25 é possível encontrar um resumo com os resultados dos ensaios e das simulações comparando os valores encontrados para o módulo de reação vertical (kv) e a capacidade d carga, respectivamente. Analisando os calores de kv, nota-se que numericamente os valores encontrados foram mais próximos, enquando os experimentais apresentaram grande variação. Isso implica que na fase inicial de carregamento a carga mobilizada para provocar o deslocamento de 1,27 mm foi menor nos modelos numéricos.

Em termos da capacidade de carga, em geral a diferença entre os resultados numéricos e experimentais foi aceitável, sendo a maior discrepância encontrada no ensaio 7. É possível observar que a profundidade da geocélula em relação a camada de base não influenciou tanto o resultado numérico quanto o experimental.

	Ensaio	Experimental	Numérico	Erro
1	S 0	186.88	246.27	32%
2	S0-B15	200.56	157.33	-22%
3	S0-B15-GB1	214.13	199.1	-7%
4	S0-B15-GB2	174.12	189.9	9%
5	S0-B30	289.77	169	-42%
6	S0-B30-GA1	310.17	155.23	-50%
7	S0-B30-GA2	356.97	170.14	-52%
8	S0-B30-GB1	415.54	197.46	-52%
9	S0-B30-GB2	378.35	207.64	-45%

Tabela 24 – Comparação entre o kv encontrado experimentalmente e numéricamente

Tabela 25 – Comparação entre as capacidades de carga encontradas experimentalmente

	Ensaio	Experimental	Numerico	Erro	
1	S 0	769.23	663.1	-14%	
2	S0-B15	555.56	586.01	5%	
3	S0-B15-GB1	1000	912.8	-9%	
4	S0-B15-GB2	1111	905.6	-18%	
5	S0-B30	769.23	745.54	-3%	
6	S0-B30-GA1	833.33	893.27	7%	
7	S0-B30-GA2	714.25	969.17	36%	
8	S0-B30-GB1	1052.63	999.55	-5%	
9	S0-B30-GB2	1111.11	1030	-7%	

10. CONCLUSÕES E SUGESTÕES

Ao avaliar o comportamento mecânico das camadas de base reforçadas com geocélula nota-se uma expressiva melhora causada pela inclusão das geocélulas na camada de base, tanto nos resultados experimentais quanto nos resultados numéricos.

Experimentalmente nota-se que esse comportamento é fortemente influenciado pela posição que a geocélula ocupa na camada de reforço. A aplicação do reforço no topo da base se mostrou muito eficaz, enquanto a geocélula aplicada no meio da camada de base não apresenta um resultado eficiente, visto que as tensões se dissipam no solo antes mesmo de atingir o reforço. Inclusive a distribuição de tensões verticais no solo para a da base de 30 mm não reforçada e para as duas configurações de reforço no meio da camada é praticamente a mesma, nos resultados numéricos a posição do reforço não apresentou a mesma influência.

A partir dos resultados obtidos e apresentados anteriormente é possível realizar algumas análises sobre a eficiência da utilização da geocélula. Analisando as curvas carga x deslocamento, tanto experimentais (Figura 90) quanto numéricas (Figura 96) fica claro que a inserção da geocélula como elemento de reforço na camada de base provoca um aumento da capacidade de carga do sistema.

Ao analisar os resultados dessa pesquisa deve ser levado em consideração o fato de que a camada de base foi aplicada sobre um subleito compactado, portanto, um solo com rigidez mais elevada do que a usual e melhor capacidade de carga.

A geocélula teve seus parâmetros mecânicos avaliados a partir do ensaio de tração, e apresentou um deslocamento de cerca de 8 mm para uma carga aplicada de 2000 kg que foi representado por simulação numérica. Inserida no solo para a realização das provas de carga a geocélula não rompeu, e os resultados numéricos mostram que quando posicionada no topo da base, ela absorveu grande parte da tensão aplicada ao sistema.

Observando inicialmente as configurações não reforçadas, nota-se que a capacidade de carga encontrada foi de aproximadamente 770 kPa para o subleito sozinho, 550 kPa para o sistema com a base de 150 mm e 770 kPa para o sistema com base de 300 mm. A inserção da base de 150 mm representou uma diminuição da capacidade de carga do sistema, isso pode ser explicado pelo fato de a camada de subleito ter sido bem compactada, conferindo maior rigidez a mesma, enquanto a base com 300 mm manteve a capacidade de carga do sistema.

A aplicação da geocélula no topo da base de 150 mm, representou um aumento de 450 kPa na capacidade de carga do sistema, um aumento de aproximadamente 80%. Analisando os resultados obtidos para a base de 300 mm, nota-se que ao aplicar a geocélula no meio da camada, o aumento da carga é mínimo, cerca de 60 kPa ou 7%. Já o reforço no topo da camada apresenta ganhos da ordem de 280 kPa em relação a base não reforçada, representando um ganho de aproximadamente 40% na capacidade de carga de todo o sistema.

É possível concluir também que a geocélula posicionada com seus alvéolos para cima (posição 1) ou para baixo (posição 2), independentemente da posição do reforço em relação à base não provoca alteração significativa no resultado, tanto na capacidade carga quanto na distribuição das tensões verticais. Ao analisar as tensões absorvidas pela geocélula, o valor máximo foi encontrado quando a mesma foi aplicada no topo da camada de 300mm.

Ao avaliar a eficiência do modelo numérico, podemos concluir que o mesmo se mostrou muito eficiente descrevendo muito bem a fase de carregamento das provas de carga, e tornou possível avaliar as tensões distribuídas nas camadas de solo, bem como as deformações encontradas. No entanto, o modelo apresentou dificuldade para processar materiais sem coesão.

Analisando os resultados encontrados, fica como sugestão para pesquisas futuras:

- Avaliar a influência do reforço de geocélula em camadas sobre solos moles;
- Avaliar diferentes posições da geocélula em relação a camada de base;
- Avaliar a influência da granulometria do material de enchimento;
- Estudar a aplicação de outros modelos constitutivos;
- Avaliar a influência do formato e do tamanho dos alvéolos da geocélula e da altura da mesma no desempenho mecânico do sistema.

REFERÊNCIAS

ABU-FARSAKH, Murad Y. et al. Mechanistic–empirical analysis of the results of finite element analysis on flexible pavement with geogrid base reinforcement. **International Journal of Pavement Engineering**, v. 15, n. 9, p. 786-798, 2014.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6457**: Amostras de solo-Preparação para ensaios de compactação e ensaios de caracterização. Rio de Janeiro, 1986.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR ISO 10318-1**. Geossintéticos Parte 1: Termos e definições. Rio de Janeiro, 2018.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR-7181**: Análise granulométrica. Rio de Janeiro, 2016.

ASTM D 1196/64. Standard Test Method for Nonrepetitive Static Plate Load Tests of Soils and Flexible Pavement Components, for Use in Evaluation and Design of Airports and Highway Pavements, 1977.

ASTM D 3080/11. Standard test method for direct shear test of soils under consolidated drained conditions, 2011.

BARNES, Graham. Mecânica dos solos: Princípios e práticas. Elsevier Brasil, 2017.

BATHURST, Richard J.; KARPURAPU, Rajagopal. Large-scale triaxial compression testing of geocell-reinforced granular soils. **Geotechnical testing journal**, v. 16, n. 3, p. 296-303, 1993.

BIABANI, M. M.; INDRARATNA, B.; NGO, N. T. Modelling of geocell-reinforced subballast subjected to cyclic loading. **Geotextiles and Geomembranes**, v. 44, n. 4, p. 489–503, 2016. Elsevier Ltd. Disponível em: http://dx.doi.org/10.1016/j.geotexmem.2016.02.001.

CHEN, R. H.; HUANG, Y. W.; HUANG, F. C. Confinement effect of geocells on sand samples under triaxial compression. **Geotextiles and Geomembranes**, v. 37, p. 35–44, 2013. Elsevier Ltd. Disponível em: http://dx.doi.org/10.1016/j.geotexmem.2013.01.004>.

GHAREH, S. Numerical modeling of the effect of geocell elements' dimensions on behavior of circular footings. **Journal of Structural Engineering and Geo-Techniques**, v. 5, n. 3, p. 9-14, 2015.

GONZÁLEZ, J.R. Estudo Numérico do Comportamento de Estacas Carregadas Lateralmente. Dissertação de Mestrado, Publicação G.DM-239/2014, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 118 p. 2014.

KOERNER, R. M. Designing With Geosynthetics. 3 ed. Unite States of America: Pearson, 761 p. 1994.

KOERNER, R. M. Designing With Geosynthetics. 5 ed. Unite States of America: Pearson, 796 p. 2005.

MAHESHWARI, P; BABU, G. S. Nonlinear deformation analysis of geocell reinforcement in pavements. **International Journal of Geomechanics**, v. 17, n. 6, p. 04016144, 2017.

MEHRJARDI, G. T.; BEHRAD, R.; TAFRESHI, S. N. M. Geotextiles and Geomembranes Scale effect on the behavior of geocell-reinforced soil. **Geotextiles and Geomembranes**, v. 47, n. 2, p. 154–163, 2019. Elsevier. Disponível em: <https://doi.org/10.1016/j.geotexmem.2018.12.003>.

MOGHADDAS TAFRESHI, S. N.; DAWSON, A. R. A comparison of static and cyclic loading responses of foundations on geocell-reinforced sand. **Geotextiles and Geomembranes**, v. 32, p. 55–68, 2012. Elsevier Ltd. Disponível em: <http://dx.doi.org/10.1016/j.geotexmem.2011.12.003>...

MOGHADDAS TAFRESHI, S. N.; SHARIFI, P.; DAWSON, A. R. Performance of circular footings on sand by use of multiple-geocell or -planar geotextile reinforcing layers. **Soils and Foundations**, v. 56, n. 6, p. 984–997, 2016.

NETO, J. O. A. Desenvolvimento de uma metodologia de cálculo e simulações numéricas aplicadas na melhoria da capacidade de carga de solos reforçados com geocélula. 2013. Tese (Doutorado em Geotecnia) – Universidade de São Paulo, São Carlos, 2013.

NETO, J. O. A. Geotextiles and Geomembranes Application of the two-layer system theory to calculate the settlements and vertical stress propagation in soil reinforcement with geocell. **Geotextiles and Geomembranes**, v. 47, n. 1, p. 32–41, 2019. Elsevier. Disponível em: https://doi.org/10.1016/j.geotexmem.2018.09.003>.

OLIAEI, M.; KOUZEGARAN, S. Efficiency of cellular geosynthetics for foundation reinforcement. Geotextiles and Geomembranes, v. 45, n. 2, p. 11–22, 2017.

PEREZ, C. C. Avaliação da influência da posição da estaca integrando um radier estaqueado em sua capacidade de carga lateral. Dissertação de Mestrado, Publicação G.DM-

286/17 Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 98 p. 2017.

POKHAREL, S. K.; HAN, J.; LESHCHINSKY, D.; PARSONS, R. L. Experimental evaluation of geocell-reinforced bases under repeated loading. **International Journal of Pavement Research and Technology**, v. 11, n. 2, p. 114–127, 2018. Chinese Society of Pavement Engineering. Disponível em: https://doi.org/10.1016/j.ijprt.2017.03.007>.

PRESTO. Geoweb Earth retention system – Techincal overview. Technical Lieratura on the GEOWEB Cellular Confinement System. Presto Products Company. 15p, 2008.

RAHIMI, M.; TAFRESHI, S. N. M.; LESHCHINSKY, B.; DAWSON, A. R. Geotextiles and Geomembranes Experimental and numerical investigation of the uplift capacity of plate anchors in geocell-reinforced sand. **Geotextiles and Geomembranes**, v. 46, n. 6, p. 801–816, 2018. Elsevier. Disponível em: https://doi.org/10.1016/j.geotexmem.2018.07.010>.

SATYAL, S. R.; LESHCHINSKY, B.; HAN, J.; NEUPANE, M. Use of cellular confinement for improved railway performance on soft subgrades. **Geotextiles and Geomembranes**, v. 46, n. 2, p. 190–205, 2018. Elsevier. Disponível em: https://doi.org/10.1016/j.geotexmem.2017.11.006>.

SHADMAND, A.; GHAZAVI, M.; GANJIAN, N. Geotextiles and Geomembranes Loadsettlement characteristics of large-scale square footing on sand reinforced with opening geocell reinforcement. **Geotextiles and Geomembranes**, v. 46, n. 3, p. 319–326, 2018. Elsevier. Disponível em: https://doi.org/10.1016/j.geotexmem.2018.01.001>.

SUKU, L.; PRABHU, S. S.; RAMESH, P.; BABU, G. L. S. Behavior of geocell-reinforced granular base under repeated loading. **Transportation Geotechnics**, v. 9, p. 17–30, 2016. Elsevier Ltd. Disponível em: http://dx.doi.org/10.1016/j.trgeo.2016.06.002>.

TAFRESHI, S. N. M.; GHOTBI, S. M. A. Efficiency of Geocell Reinforcement for Using in Expanded Polystyrene Embankments via Numerical Analysis. **Geotextiles and Geomembranes**, v. 11, n. 9, p. 1217–1221, 2017.

TAFRESHI, S. N. M.; SHAGHAGHI, T.; TAVAKOLI, G.; DAWSON, A. R.; GHADRDAN,M. A simplified method for predicting the settlement of circular footings on multi-layeredgeocell-reinforced non-cohesive soils. Geotextiles and Geomembranes, v. 43, n. 4, p. 332–344,2015.ElsevierLtd.Disponívelem:<http://dx.doi.org/10.1016/j.geotexmem.2015.04.006>.

TAVAKOLI MEHRJARDI, G.; MOTARJEMI, F. Interfacial properties of Geocell-reinforced granular soils. **Geotextiles and Geomembranes**, v. 46, n. 4, p. 384–395, 2018. Elsevier. Disponível em: https://doi.org/10.1016/j.geotexmem.2018.03.002>.

THAKUR, J. K.; HAN, J.; PARSONS, R. L. Factors influencing deformations of geocellreinforced recycled asphalt pavement bases under cyclic loading. **Journal of Materials in Civil Engineering**, v. 29, n. 3, p. 1–12, 2017.

VENKATESWARLU, H.; UJJAWAL, K. N.; HEGDE, A. Laboratory and numerical investigation of machine foundations reinforced with geogrids and geocells. **Geotextiles and Geomembranes**, v. 46, n. March, p. 882–896, 2018.

VERTEMATTI, José Carlos. Manual brasileiro de geossintéticos. Editora Blucher, 2015.

YANG, X.; HAN, J.; PARSONS, R. L.; LESHCHINSKY, D. Three-dimensional numerical modeling of single geocell-reinforced sand. **Frontiers of Architecture and Civil Engineering** in China, v. 4, n. 2, p. 233–240, 2010.

YANG, X.; HAN, J.; POKHAREL, S. K.; et al. Accelerated pavement testing of unpaved roads with geocell-reinforced sand bases. **Geotextiles and Geomembranes**, v. 32, p. 95–103, 2012. Elsevier Ltd. Disponível em: http://dx.doi.org/10.1016/j.geotexmem.2011.10.004>.

ZHANG, L.; ZHAO, M.; SHI, C.; ZHAO, H. Bearing capacity of geocell reinforcement in embankment engineering. **Geotextiles and Geomembranes**, v. 28, n. 5, p. 475–482, 2010. Elsevier Ltd. Disponível em: http://dx.doi.org/10.1016/j.geotexmem.2009.12.011>.

APÊNDICE A - TUTORIAL DA MODELAGEM DA PROVA DE CARGA

Esse capítulo tem como objetivo trazer de forma detalhada todos os passos necessários para modelagem e simulação de uma prova de carga genérica.

A1. CONHECENDO A INTERFACE DO PROGRAMA

Ao abrir o Software Abaqus 6.14 o usuário terá acesso a tela inicial apresentada na Figura 164. A região 1 traz a chamada *Model Tree* que tem como objetivo apresentar uma visão gráfica geral do modelo e dos objetos que ele contém, como componentes (*parts*), materiais, passos, condições de contorno, interações, entre outros. Além de oferecer uma maneira rápida de transitar entre os diversos módulos do programa e gerenciar os vários objetos que fazem parte de um modelo numérico. Em 2 temos a área de mensagens ou linha de comando do programa, onde serão dadas as mensagens de tudo que é realizado no modelo, bem como possíveis mensagens de erro no processamento, o menu 3 é conhecido como *toolbox* área e apresenta as principais ferramentas para cada módulo selecionado na *Model Tree*. Em 4, 5, 6 e 7 temos algumas barras importantes para o uso do aplicativo, sendo 4 a *Menu bar*, onde se pode configurar o arquivo, a interface do usuário entre outros; 5 e 6 são conhecidas como *Toolbars* por trazerem algumas ferramentas principalmente de visualização do modelo, e 7 como *Context bar*, que traz alguns menus que permitem navegar entre os diferentes módulos da aplicação, modelos presentes no arquivo e entre as partes de cada modelo. O *viewport* onde pode ser visualizar tudo que está sendo feito no modelo numérico é ilustrado por 8.

Figura 164 – Componentes da janela principal do Abaqus

Fonte: Autora (2020)

A2. DEFININDO A GEOMETRIA DO MODELO

i. CRIAÇÃO DAS PARTES DO MODELO

A geometria do modelo é definida pela criação das *parts* que representam cada elemento do modelo na simulação. Para a inserção de uma nova *part* no modelo, é preciso dar duplo clique em *Parts* no *model tree*, que abrirá a janela *Create Part*, Figura 165. Nessa janela é possível escolher o espaço de modelagem que será utilizado, o tipo e a característica básica da *part* que está sendo criada, além de preencher o tamanho aproximado que delimitará a área da grade de referência para o desenho da peça, deve-se escolher esse tamanho levando em consideração a maior dimensão da peça será criada. Após a configuração da *part*, deve-se clicar em *continue* abrindo automaticamente o *Sketcher* que com um conjunto de ferramentas que permite desenhar o perfil bidimensional da peça.

Para criar a parte que representa o maciço de solo, deve-se escolher a opção 3D no menu *modeling space*, do tipo *deformable*, com *shape solid* e formado a partir de *extrusion*. No *Sketcher* utiliza-se a ferramenta Create Lines : Rectangle para desenhar um quadrado com 600 mm de lado, como mostra a Figura 166. Para sair do *Sketcher* é preciso clicar em done no inferior da tela de desenho, abrindo a janela *Edit Base Extrusion*, figura 4, onde deve ser escolhido a profundidade do elemento, no caso do maciço contendo apenas o subleito essa profundidade deve ser de 850 mm, resultando em uma parte como a Figura 168.

Para a parte representante da placa de carga, as configurações usadas foram as mesmas do maciço de solo, no entanto as ferramentas utilizadas para desenhar a placa foram *Create Circle, Create Lines* e *Auto-trim*.

Modeling St		
in our and o	pace	
● 3D ○ 2	D Planar	 Axisymmetric
Туре		Options
Deformation	ble	
O Discrete	rigid	
○ Analytica	al rigid	None available
O Eulerian		
Base Feature	e	
Shape	Туре	
Solid	Extrus	on
O Shell	Revolu	ution
	Sweep	R
() Wire		

Figura 165 – Janela Create Part

Fonte: Autora (2020)

Figura166 – Janela Sketcher de criação da geometria da part

Fonte: Autora (2020)

Figura 167 – Janela Edit Base Extrusion

Type: Blind		
Depth: 850		
Note: Twist and draft	annot	be specified togethe
Hote. Twiscana anaret	1.00	Contraction of the second second
Include twist, pitch:	0	(Dist/Rev)

Fonte: Autora (2020)

Figura 168 – Part que representa o maciço de solo criada

Fonte: Autora (2020)

Figura 169 – Janela Sketcher e ferramentas necessárias para o desenho da placa de

carga.

Fonte: Autora (2020)

ii. MONTAGEM DO MODELO

Com todas as parts do modelo criada, deve-se criar a montagem do modelo, *Assembly*. Para adicionar as partes à montagem, deve-se expandir o menu Assembly na model tree e dar um duplo clique em *Instances*, como mostra a Figura 170, abrindo a janela *Create Instance* (Figura 171), onde deve-se selecionar as partes que serão adicionadas ao modelo. Após adicionar todas as partes do modelo ao *Assembly* deve-se posicioná-las corretamente de acordo com o arranjo que está sendo simulado. Para isso, conta-se com a ajuda dos botões *Translate Instance* e *Rotate Instance* presentes no menu *toolbox* quando o *module Assembly* está ativo e mostrados em destaque na Figura 172.

Fonte: Autora (2020)

Figura 171 – Janela Create Instance

Fonte: Autora (2020)

Figura 172 – Ferramentas necessárias para montagem do modelo

Fonte: Autora (2020)

A3.DEFININDO MATERIAIS E SEÇÕES

Com um duplo clique em materiais na *Model Tree*, abre-se a janela *Edit Material*, Figura 173, onde pode-se criar diferentes materiais e acrescentar diversos parâmetros aos mesmos. Do menu *General*, utiliza-se para essa simulação o parâmetro de densidade, enquanto no Menu *Mechanical* encontraremos as opções necessárias para definir os parâmetros de elasticidade e plasticidade do material, tendo como opção diversos modelos constitutivos consolidados. Os parâmetros utilizados para a simulação estão expostos anteriormente no capítulo de materiais e métodos.

Após configurados os materiais devem ser criadas as seções que tem como objetivo atribuir as características inseridas nos materiais às parts criadas anteriormente. Para tanto deve-

se dar duplo clique em Sections na *Model Tree*, abrindo a janela *Create Section* como mostra a Figura 174-a, onde deve ser escolhido o tipo de seção, ao selecionar e clicar em *Continue*.. o software mostra outra janela a *Edit Section* onde dever ser escolhido o material que aquela seção representará.

Com as *Sections* devidamente criadas, deve-se acessar o módulo *Property* através do menu *Module* presente na *Context bar*, selecionar a *part*, clicar no botão *Assign Section* a janela *Edit Section Assigment* surgirá e deve-se escolher a *Section* correspondente a *part* selecionada, como mostra a Figura 175.

🜩 Edit Material				×
Name: Material-2	6			
Description:				1
Material Behavio	ors			
Density				
<u>G</u> eneral <u>M</u> ech	nanical <u>T</u> hermal	Electrical/Magnetic	<u>O</u> ther	4
Elastic				
Type: Isotropic	~		▼ Subopt	ions
Use temperat	ure-dependent dat	a	1	
Number of field	variables: 0	÷1		
Moduli time sca	le (for viscoelasticit	v): Long-term		
	ion	57 <u>3</u>		
No tension				
Data				
Young	s Poisson	's		T
1				
	OK		Cancel	

Figura 173 – Janela Edit Material

Fonte: Autora (2020)

Figura 174 – Janelas: a) Create Section; b) Edit Section

Name:	Plac	a		Type: Solid, Homogeneous
Categ	gory	Туре		Material: Placa (Aço)
Sol	lid	Homogeneous		Plane stress/strain thickness: 1
⊖ Sh	ell	Generalized plane strain		
O Beam Eulerian			UK Cancel	
() Flu	iid	Composite		
() Ot	her		1	

Fonte: Autora (2020)

Figura 175 – Atribuindo uma Section a uma part

A4.CONFIGURANDO ANÁLISE

i. Step Initial

O Abaqus processa a simulação numérica em "passos" da análise, os chamados *steps*. O primeiro *step* de qualquer análise será sempre o *step initial* onde são aplicadas as condições iniciais do problema.

Para aplicar as condições de contorno no modelo, deve-se expandir o *step intial* na *model tree* e selecionar a opção *BCs*. A caixa de diálogo *Create Boundary Conditions* será aberta e a opção *Displacemente/Rotation* deve ser selecionada, como mostra a Figura 176. A restrição deverá ser aplicada então em cada face do modelo de acordo com sua direção, a Figura 177 mostra a aplicação de cada uma das *Boundary Conditions*, enquanto a Figura 178 apresenta o modelo com todas as restrições aplicadas.

Figura 176 – Criando Boundary Conditions

Fonte: Autora (2020)

Fonte: Autora (2020)

Figura 178 – Modelo com todas as restrições aplicadas

Fonte: Autora (2020)

Ainda no *step initial* são definidas as interações entre os modelos, nas simulações sem o reforço a única interação presente no modelo é a interação entre a placa de carga e o maciço de solo. Para criar uma interação deve-se selecionar a opção *interactions* dentro do *step inital*, na janela *create interaction* mostrada na Figura 179, a opção *Surface-to-surface contact (Standard)* deve ser selecionada. Deve-se então selecionar o fundo da placa de carga como *Master surface* e o topo da camada do subleito como *slave surface*, como mostra a Figura 180.

Figura 179 – Janela Create Interaction

Name:	Placa-maciçd	
Step:	Initial 🐱	
proced	ure:	
Туре	s for Selected Step	
Gene	ral contact (Explicit)	^
Gene	ral contact (Standard)	
Surfa	ce-to-surface contact (Standard)	
Surfa	ce-to-surface contact (Explicit)	
Self-c	ontact (Standard)	
Self-c	ontact (Explicit)	
Fluid	cavity	
Fluid	exchange	
XFEM	crack growth	
Cyclic	symmetry (Standard)	
	foundation	

Fonte: Autora (2020)

Figura 180 - Selecionando as superfícies da interação

Com as superfícies selecionadas, devem ser atribuídas as propriedades para essa interalção, para tanto na janela Edit Interaction, clica-se no notão *Create Interaction Property*, mostrado em destaque na Figura 181. Na janela Edit *Contact Property* que será aberta devemos atribuir a opção *"Hard Contact"* para o *Normal Behavior* e a opção *Frictionless* para o *Tangencial Behavior* (Figura 182). A Figura 183 apresenta o resultado da interação.

Edit Interaction		×
Name: Int-1		
Type: Surface-to-se	urface contact (Standard)	
Step: Initial		
Master surface:	n_Surf-1	
Sliding formulation:	Finite sliding	9
Discretization metho	d: Surface to surface 🗸	
Exclude shell/	membrane element thickness	
Degree of smooth	ing for master surface: 0.2	
Use supplementa	ry contact points:	O Never O Always
Contact tracking:	Two configurations (path)	Single configuration (state)
Slave Adjustment	Surface Smoothing Clearance	Bonding
No adjustment		
O Adjust only to re	move overclosure	
O Specify tolerance	for adjustment zone: 0	
○ Adjust slave nod	es in set:	
0.1.		
Contact interaction p	roperty:	~ 묩
Options: Interference	e Fit	
Contact controls: (D	efault)	
Active in this step		
0	<	Cancel
	Fonte: Autora (20	20)

≑ Edit Contact Property			×
Name: IntProp-1			
Contact Property Options			
Tangential Behavior			
Normal Behavior			
<u>M</u> echanical <u>T</u> hermal <u>E</u> lectric	al		1
Normal Behavior			
Pressure-Overclosure:	"Hard" Contact	~	
Constraint enforcement method:	Default	~	
Allow separation after contact			
💠 Edit Contact Property			×
Name: IntProp-1			
Contact Property Options			
Tangential Behavior			
Mechanical Ihermal Electric	al		*
Tangential Behavior			
		-	

Figura 182 – Janela Edit Contact Property

Fonte: Autora (2020)

Figura 183 – Interação aplicada

Fonte: Autora (2020)

ii. Aplicação da carga

Para aplicar a carga no modelo, outro step precisa ser criado, com um duplo clique em steps, abre-se a janela *Create Step*, mostrada na Figura 184, nessa janela deve-se selecionar a opção *Static, General* e clicar em *Continue* para ser direcionado para a janela *Edit Step*. Na aba *basic* da janela devem ser atribuídas as propriedades mostradas na Figura 185, enquanto na aba *incrementation* devem ser definidos o número e o tamanho dos incrementos conforme ilustra a Figura 186.

Treate Step		×
Name: Carregan	nentq	
Insert new step a	fter	
Initial		
Procedure type:	General	~
Dynamic, Temp	-disp, Explicit	^
Geostatic		
Geostatic Heat transfer		
Geostatic Heat transfer Mass diffusion		
Geostatic Heat transfer Mass diffusion Soils		
Geostatic Heat transfer Mass diffusion Soils Static, General		
Geostatic Heat transfer Mass diffusion Soils Static, General Static, Riks		~
Geostatic Heat transfer Mass diffusion Soils Static, General Static, Riks	>	~

Figura 184 – Janela Create Step

Fonte: Autora (2020)

⇔ Edit Step		×
Name: Carregamento Type: <mark>Static, Ge</mark> neral		
Basic Incrementation	Other	
Description:		
Time period: 1		
NIgeom: Off (This On of Ia	setting controls the inclusion of nonlinear effects rge displacements and affects subsequent steps.)	
Automatic stabilization:	Specify dissipated energy fraction 😔 : 0.0002	
🗹 Use adaptive stabiliz	zation with max. ratio of stabilization to strain energy: 0.05	
Include adiabatic heat	ting effects	

Fonte: Autora (2020)

💠 Edit Step				×
Name: Carregan	nento			
Type: Static, Ger	ieral			
Basic Increme	entation	Other		
Type: Autor	natic ()	Fixed		
Maximum numl	per of incr	ements: 1000	000	
	Initial	Minimum	Maximum	
Increment cizes	.01	1E-09	Eo.	

Figura 186 – Janela Edit Step (Incrementation)

Fonte: Autora (2020)

Com o *step* de carregamento devidamente criado e configurado é preciso criar a carga que será aplicada ao modelo. Para isso expandimos o menu do step criado e selecionamos a opção load (duplo clique), a janela *Create Load* (Figura 187) será aberta, nesse caso será utilizada a categoria *Mechanical* e o tipo da carga será *Pressure*, ao criar a carga abre-se uma nova janela a *edit load*, onde deve ser selecionada a superfície onde a carga será aplicada (nesse caso a placa de carga) e a magnitude da carga, mostrada na Figura 188.

Figura 187 – Janela Create Load

Name:	Load-1		
Step:	Carregamento	~	
Proced	lure: Static, Genera	l	
Cate	gory	Types for Selected Step	
	echanical Iermal	Concentrated force Moment	^
	oustic uid ectrical/Magnetic	Pressure Shell edge load Surface traction Pipe pressure	
O M O Ot	ass diffusion her	Body force Line load Gravity Bolt load	~

Fonte: Autora (2020)

Figura 188- Janela Edit Load

Fonte: Autora (2020)

iii. Descarregamento

Para representar a etapa de descarregamento da prova de carga é necessário criar um novo *step*, com exatamente as mesmas características mostradas para o *step* de carregamento. Como esse *step* será adicionado após o carregamento a carga aplicada será transferida para o mesmo e será preciso editá-la para simular o descarregamento. Para isso basta expandir o menu do novo *step* criado e dar um duplo clique sobre a *Load-1*, a janela *edit load* será aberta e devese mudar a magnitude da carga para 0, como mostra a Figura 189.

💝 Edit Load		×
Name: Load-	1	
Type: Pressu	Jre 📲	
Step: Step-2	2 (Static, General)
Region: Surf-3	i i i	
Distribution: U	Iniform	
* Magnitude:	đ	
Amplitude:	(Ramp)	► Po
* Modified in th	his step	

Figura 189 – Edit Load (descarregamento)

Fonte: Autora (2020)

iv. Geração da Malha

Com os passos da simulação definidos é preciso gerar a malha que representará os elementos do modelo numérico. Para definir a malha deve se acessar o módulo *mesh* pelo *context bar*. Com o módulo *mesh* aberto três botões (em destaque na Figura 190) são os principais para a geração da malha. O primeiro botão abre a janela *Global Seeds*, mostrada na Figura 191, onde deve ser definido o tamanho dos elementos da malha. O segundo botão é o *Mesh Part Instance*, que aplica as configurações escolhidas da malha no elemento, e o terceiro botão em destaque abre a janela *Edit Element Type*, com opções para definir os elementos finitos, tanto para a parte do solo quanto a placa de carga será utilizado o elemento C3DR8, como pode ser observado na Figura 192, a Figura 193 mostra os elementos com as malhas aplicadas.

Fonte: Autora (2020)

Figura 191 – Janela Global Seeds

🜩 Global Seeds	
Sizing Controls	
Approximate global size: 📴	
Curvature control	
Maximum deviation factor (0.0 < h/L < 1.0):	0.1
(Approximate number of elements per circle	8)
Minimum size control	
By fraction of global size (0.0 < min < 1.4)	0) 0.1
○ By absolute value (0.0 < min < global size	e) 8.5
	()

Fonte: Autora (2020)

lement Libran/	Eamily	
	raminy	
Standard 🔿 Explicit	3D Stress	
	Acoustic	
eometric Order	Continuum Shell	
) Linear () Quadratic	continuum sitei	
Hex Wedge Tet		
Hybrid formulation	Reduced integration 🔲 Incompatible modes	
Element Controls		
Element controls		•
Hourglass stiffness:	Use default Specify	
Viscosity:	● Use default ○ Specify	
Kinematic split:	Average strain Orthogonal Centroid	
Second-order accuracy	: 🔿 Yes 🖲 No	
Distortion control:	● Use default ○ Yes ○ No	
	Length ratio: 0.1	~
C2D0P. As 0 and - lines	shiek advard intervation beverlars control	
CSDOR: An o-node linea	r brick, reduced integration, nourgiass control.	
te: To select an element	shape for meshing.	
	ols" from the main menu bar.	
select "Mesh->Conti		

Fonte: Autora (2020)

Figura 193 – Malha gerada nos elementos: a) Subleito; b) Placa

Fonte: Autora (2020)

A5. RODANDO A SIMULAÇÃO

Depois de todos os elementos do modelo definidos e aplicados corretamente é necessário processar a simulação numérica, para isso é nessário criar um *Job*, com duplo clique em *Job* na *Model Tree*, para abrir a janela *edit job* mostrada na Figura 194. Para a presente simulação as configurações do *job* foram consideradas *default*. Para acompanhar o andamento do *job*, basta clicar com o botão direito do mouse sobre o mesmo e selecionar a opção monitor, ao abrir a janela *monitor*, mostrada na Figura 195, será possível acompanhar cada incremento aplicado a simulação e ainda possíveis mensagens de erro e avisos.

Model: Mode Analysis produ	:I-1 uct: Abaqu	ıs/Standard			
Submission	General	Memory	Parallelization	Precision	
 Full anal Recover Restart 	ysis (Explicit)				
Run Mode Backgrou	nd () Que	ue:	Hos	t name: e:	
Submit Tin	ne itely				

Figura 194 – Janela Edit Job

Fonte: Autora (2020)

Step	Increment	Att	Severe Discon Iter	Equil Iter	Total Iter	Total Time/Freq	Step Time/LPF	Time/LPI Inc
1	1	1	0	4	4	0.01	0.01	0.01
1	2	1	0	3	3	0.02	0.02	0.01
1	3	1	0	3	3	0.035	0.035	0.015
1	4	1	0	3	3	0.0575	0.0575	0.0225
1	5	1	0	4	4	0.09125	0.09125	0.03375
Submit Started Compl	tted: Wed Jun 10 I: Analysis Input leted: Analysis In	22:26:59 t File Pro put File I) 2020 cessor Processor					1
Search	Text				ich caro 🛛			

Figura 195 – Janela monitor

Fonte: Autora (2020)

A6. GERANDO RESULTADOS

Depois do job processado em sua totalidade, é possível avaliar e exportar os resultados da simulação. Para visualizar os resultados do processamento do modelo, basta clicar sobre o *job* com o botão direito e selecionar *results*. Ao selecionar *results* a interface do programa se tornará a mostrada na Figura 196, em 1 é possível selecionar uma variável e analisar sua distribuição pelo modelo inteiro ou part selecionada. Em 2 é possível gerar as curvas, com um duplo clique em *XY-Data* abre-se a janela *Create XY Data* (Figura 197).

Em *Create XY Data* ao selecionar a opção *ODB Field output*, abre-se a janela *XY Data* from *ODB Field Output*, exposta na Figura 198, onde na aba Variables devem ser selecionadas as variáveis que serão extraídas e na aba *Elements/Nodes* os elementos ou nós onde essas variáveis serão calculadas. Selecionando operate XY data a janela *Operate on XY data* (Figura 199) é aberta e nela é possível realizar operações entre as variáveis exportadas.

Abaqus/CAE 6.14-1 - Model Database: E	DEFESA-SIMULAÇÕES\5 - S0-B30\1 - S0-B30.cae [Viewport: 1]	- 0 ×
Eile <u>M</u> odel Vie <u>w</u> port <u>V</u> iew <u>R</u> es	It Plot Animate Report Options Tools Plug-ins Help N?	- 6
╘╔╡╔╘┊┋┊┿Ҁ╵		Mises
Model Results	Module: Visualization V Modeli E/DEFESA-SIMULAÇÕES/5 - S0-B20/Job-1.odb	1 Het all In Het all I
Session Data 🔤 🌲 🖻		
🛙 🧧 Output Databases (1)	3, Mises (Avg: 15%)	
B 😸 Model Database (1) B 🔲 Spectrums (7)	10.306+00 +5.808+00 +5.280e+00	
III XYPlots (1)	+4.752e+00	
1 XYData (2) 2	1 +3.1688+00 1 × +2.640e+00 1 ×	
Display Groups (1)	**************************************	
Free Body Cuts	→ +5.288e-01 +8.378e-04	
Movies		
Images		
	Z ODB: Job-1.odb Abaous/Standard 6.14-1 Wed Jun 10.23:11:22 H	
	🔐 📰 Y 🎝 Sten: Sten-1	
	Increment 94: Step Time = 0.4887 Primary Var: S, Mises	
	Deformed Var: U Deformation Scale Factor: +1.000a+00	
		35 SIMULI
The job "Job-1" has been The job input file "Job-	created .inp" has been submitted for analysis.	*
Job Job-1: Analysis Inpu	File Processor completed successfully.	

Figura 196 – Interface Results do Abaqus

Fonte: Autora (2020)

Figura 197 – Janela Create XY Data

Fonte: Autora (2020)

Figura 198 – Janela XY Data from ODB Field Output

Output Variables Position: Unique Nodal	
Position: Unique Nodal	
Click checkboxes or edit the identifiers shown next to Edit below.	
	^
CF: Point loads	
IF: Logarithmic strain components	
PE: Plastic strain components	
PEEQ: Equivalent plastic strain	
PEMAG: Magnitude of plastic strain	
RF: Reaction force	
	~

Fonte: Autora (2020)

💠 Operate on	XY Data		>
nter an express	ion by typing and selecting XY Data and Operato	ors below.	
xample: maxEn	welope("XYData-2", "XYData-4") * 2.5 + "XYData	a-5"	
XY Data			Operators
Name filter:		A - XYData, float, or integer X - XYData	
Name	Description		
_temp_3	at part instance PART-2-1 node 9		l - integer
			F - float
			0
			*
			1
			1/A
			acos(A)
			append((X,X,))
			asin(A)
			atan(A)
Add to Express	ion 🗌 Skip checks		butterworthFilter(X,F)
c . 10/D .		0.5	
Create XY Dat	Save As Plot Expression	Clear Ex	pression Cancel

Fonte: Autora (2020)